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In this paper, we analyse the dispersion of a dye by a Landau–Squire plume, generated
by a jet flow emerging from a nanocapillary into a reservoir. We demonstrate
analytically that the dye concentration profile exhibits a long-range profile decaying
as the inverse of the distance to the origin, whereas the plume shape is only a
function of a Péclet number defined in terms of the flow characteristics inside
the nanocapillary. These predictions are successfully compared with experiments
on fluorescent dye dispersion from nanocapillaries under pressure-driven flow. The
plume shape allows extraction of the nanojet force characterizing the Landau–Squire
velocity profile for a given pressure drop, with results in full agreement with direct
velocimetry measurements and finite-element calculations. The peculiarities of the
Landau–Squire plume make it a sensitive probe of the flow properties inside the
seeding nanocapillary.

Key words: jets, low-Reynolds-number flows, micro-/nano-fluid dynamics

1. Introduction

Nanofluidics, the study of flows down to the nanoscale, has emerged over recent
years thanks in particular to the development of new methods to fabricate controlled
fluidic systems with nanoscale geometries, as well as of proper instrumentation to
quantify transport at these scales (Bocquet & Tabeling 2014). This has allowed
the study of ionic and water transport across nanopores and nanotubes made of
various materials, thereby revealing a number of exotic transport properties (Siria
et al. 2013; Geng et al. 2014; Joshi et al. 2014; Park & Jung 2014; Feng et al.
2016; Secchi et al. 2016). This opens up new possibilities in the development of
innovative processes for desalination, nano-filtration and energy harvesting (Werber,
Osuji & Elimelech 2016). However, while measurement of electrical properties
across nanochannels is now relatively standard (Branton et al. 2008; Siria et al.
2013; Stein 2015; Feng et al. 2016), measurement of mass flow through nanoscale
capillaries remains a considerable challenge due to the minute flow emerging from
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FIGURE 1. Landau–Squire jet flow emerging from a nanocapillary. (a) Schematic of
pressure-driven streamlines inside the nanocapillary and Landau–Squire streamlines
outside; the angle γ defines the internal half-opening-angle of the nanocapillary.
(b) Close-up view of red box in (a); simulated flow amplitude at the nanocapillary tip
(box size 1.25 µm× 2.5 µm; nanocapillary tip diameter 250 nm).

such nanopipes (Bocquet & Tabeling 2014; Secchi et al. 2016). In this context, it
was demonstrated recently that the peculiarities of the nanojet flow emerging from a
nanocapillary, the so-called Landau–Squire flow, could be harnessed in order to reach
the proper sensitivity to extract the mass transport across a tube down to nanometric
sizes (Secchi et al. 2016).

The Landau–Squire flow corresponds to a jet flow emerging from the end of a
(semi-infinite) narrow tube into a reservoir with infinite dimension; see figure 1. This
flow was first solved by Landau and Squire in two seminal works (Squire 1951;
Landau & Lifshitz 1959). Its properties were investigated experimentally in recent
contributions by Laohakunakorn et al. (2013) and Secchi et al. (2016). An interesting
and peculiar specificity of this flow is that it is completely characterized by the rate
of momentum transferred from the tube into the reservoir, i.e. a force – but not by
the flow rate. In the viscous (low-Reynolds) regime, the solution for the flow induced
in the reservoir is indeed given by a Stokeslet,

vr =
FP

4πη

cos θ
r
, vθ =−

FP

8πη

sin θ
r
, (1.1a,b)

where the tube tip is taken as the origin for the distance r and the angle θ is measured
from the tube axis; η is the fluid viscosity (figure 1). In this equation, FP has the
dimension of a force and corresponds to the fluid momentum transfer. On dimensional
grounds, the jet force FP is accordingly expected to take the form of a Stokes formula
in the viscous regime (Secchi et al. 2016),

FP = αηR1v, (1.2)

where R1 is the characteristic radial dimension of the tube and v is the average flow
velocity emerging from the tube tip, defined in terms of the fluid flux Q as v=Q/πR2

1;
α=O(1) is a numerical coefficient which depends on the specific geometry of the tip
of the nanocapillary. A quantitative estimate of α can be obtained numerically (Secchi
et al. 2016).

In this paper, we consider a situation in which a dye is added to the capillary and
dispersed into the reservoir from the capillary tip under the application of a pressure
drop. A stationary plume is created in the reservoir, the shape of which results from
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The Landau–Squire plume

the competition between the convection under the Landau–Squire pressure-driven flow
and the molecular diffusion of the dye. In the following, we first solve analytically the
convection–diffusion equation for the dye concentration in the reservoir (§ 2); and then
compare the results with an experimental investigation of the plume of a fluorescent
dye dispersed from nanocapillaries (§ 3).

2. The Landau–Squire plume: theoretical predictions

We show here that the dispersion of dye particles via the Landau–Squire (LS) flow
field can be predicted analytically. We consider a situation in which the flowing fluid
inside the capillary is seeded with a dye, with concentration C0 and bulk diffusion
coefficient D. The dye emerges into the reservoirs from the tip of the feeding capillary,
which therefore acts as a point source with, say, an incoming solute flux Φ0. The
latter is the sum of a convective contribution, QC0, and a diffusive contribution
proportional to ∼R1DC0 (with a prefactor whose explicit expression, which depends
on the geometry of the seeding capillary tip, will not be needed in the following).
Due to the infinite volume of the reservoir, a steady state is reached and the stationary
concentration of particles verifies the diffusion–convection equation,

D1C− v · ∇C= 0, (2.1)

where v(r) is the Landau–Squire (divergence-free) flow field in the reservoir in (1.1).
In spherical coordinates, equation (2.1) reads

D
1
r2
∂r(r2∂rC)+D

1
r2 sin θ

∂θ(sin θ∂θC)−
Fp

4πηr
cos θ∂rC+

Fp

8πηr
sin θ

r
∂θC= 0. (2.2)

We first note that any function of the type f (θ)/rn, with n a real number, can be a
solution of (2.2). However, conservation of the number of dye particles imposes that
for any r,

Φ0 = 2πr2
∫ π

θ=0
Jr(r, θ) sin θ dθ, (2.3)

where Jr(r, θ) = −D∂rC + (Fp cos θ/4πηr)C is the radial component of the particle
flux and Φ0 is the total solute flux. This imposes n = 1, and we deduce C(r, θ) =
f (θ)/r. The differential equation for f (θ) takes the form

D sin θ∂θ(sin θ∂θ f )+
Fp

4πη
cos θ f +

Fp

8πη
sin θ∂θ f = 0. (2.4)

The general solution of this equation is obtained as

f (θ)= Ae(Pe/2) cos θ
+ Be(Pe/2)(cos θ−1)

{
−ePe

∫
∞

−(Pe/2)(cos θ+1)

e−t

t
dt+

∫
∞

(Pe/2)(1−cos θ)

e−t

t
dt
}
,

(2.5)
where A and B are two integration constants. This solution introduces an effective
Péclet number specific to the Landau–Squire problem and defined as

Pe=
Fp

4πηD
. (2.6)
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FIGURE 2. The shape of the plume-like concentration profile for different Péclet numbers.
(a) Iso-concentration profiles derived from r/rc = Pe e(Pe/2)(cos θ−1), with rc a characteristic
length scale independent of Pe, for different Péclet numbers (for illustration, we assumed
Φ0 ∝ Pe). (b) Renormalized iso-concentration profiles r/rmax = e(Pe/2)(cos θ−1) for several
Péclet numbers. For small Pe, the profile is very circular, nearly diffusive. For large Pe, the
profile is severely distorted in a plume-like shape by the Landau–Squire flow. The colour
scale is the same for both plots. (c) Simulated concentration profiles in the x, y plane,
divided by the largest concentration value measured, for a nanocapillary with dimensions
R1 = 120 nm and γ = 4◦.

Imposing that f is a regular function yields B = 0, and A is deduced from solute
number conservation, equation (2.3). Altogether, the solution of the diffusion–
convection problem thus reads

C(r, θ)=
Φ0

4πDr
(1+ ε(Pe))e(Pe/2)(cos θ−1), (2.7)

where ε(Pe)= (1− (1+ Pe)e−Pe)/(Pe− 1+ (1+ Pe)e−Pe) is a small contribution of Pe
(vanishing for low and high Pe and always smaller than 0.5).

This shows that the concentration profile exhibits an interesting combination of
a long-range 1/r power-law decay (its amplitude Φ0 being linearly dependent on
the flow Q, see above), with an exponential dependence of the azimuthal shape on
the Landau–Squire jet force Fp via Pe. Typical concentration profiles are shown in
figure 2(a,b). We show for illustration a numerical calculation of the full concentration
profile evolution with increasing pressure drop in figure 2(c). The latter is obtained
by combining a finite-element solver for the LS flow following Secchi et al. (2016)
and a finite-difference solver for the concentration profile in (2.1).

The general properties of the plume as observed in figure 2(a), namely the shape
and aspect ratio, can be predicted from (2.7). For low Péclet number, the profile is
isotropic (circular shape) with an aspect ratio close to unity. For large Péclet number,
the concentration profile in (2.7) simplifies to C(r, θ) = (Φ0/4πDr) exp[−(Pe/4)θ 2

],
so that the aspect ratio of the plume is accordingly expected to scale sublinearly with
the Péclet number, as 1/θ ∼ Pe1/2 for Pe� 1.
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The Landau–Squire plume

z

Fluorescein

Pressure

(a) (b)
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FIGURE 3. Sketch of the experimental set-up. (a) Sketch of the experimental set-up for
the optical detection of the dye plume emerging from the nanocapillary, and imaging of
the flow field via particle tracking of colloids. (b) Scanning electron microscope image
of a typical glass nanocapillary. (c) The fluorescence signal emitted from fluorescein at
1.5 mM emerging from a nanocapillary with R1= 120 nm and γ = 3◦ at 1P= 1550 mbar.

3. Experimental investigation of the Landau–Squire flow emerging from a
glass nanocapillary

We now turn to an experimental study of the dispersion of a fluorescent dye
emerging from a glass nanocapillary.

3.1. Experimental set-up and procedure
The experimental set-up is sketched in figure 3. The cell was composed of two
macroscopic reservoirs bridged by a nanocapillary. A pressure drop was imposed on
the (sealed) reservoir located at the rear, while the front reservoir was kept at ambient
pressure. It was constituted of two glass slides, in order to allow visualization of the
region in front of the nanocapillary tip. The glass slides were separated by a plastic
frame, sealed via two Viton joints (of thickness 0.125 mm) and squeezed between
the upper and lower parts of the chamber. The pressure was controlled by an AF1
microfluidic pressure pump from Elveflow.

Nanocapillaries were fabricated on the basis of pulled Pasteur pipettes. Glass
capillaries were purchased from Sutter Instrument Company (standard wall borosilicate
tubing, internal diameter 0.5 mm, external diameter 1 mm and length 10 cm) and
were pulled using a programmable laser puller (P-2000 laser-based microcapillary
puller, Sutter Instrument Company). The parameters of the capillary puller were
finely tuned in order to fix the outer geometry of the nanocapillary tip and vary the
dimension of the opening. The nanopore radius was measured with a scanning electron
microscope (SEM, Nova Nanosem). The typical shape of a pulled nanocapillary is
presented by the SEM image of the tip in figure 3(b).

Fluorescein (Sigma Aldrich) was dispersed in deionized water to a final concentration
of 1.5 mM. NaOH was added to the deionized water to reach a pH equal to 8. The
water was previously degassed and filtered with syringe filters with 0.2 µm pore size.
The glass nanocapillaries were air-plasma treated for 5 min in a low-power plasma
cleaner (Harrick Plasma) and immediately filled with the fluorescein solution. The
nanocapillary was inserted into the holder and the cell was sealed. The glass reservoir
was rinsed with deionized water. For the tracking experiments to characterize the LS
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flow, the reservoir was filled with a suspension of polystyrene particles (diameter
0.5 µm, Biovalley) at a volume fraction of φ = 10−5 at pH= 8.

The experimental set-up was mounted on the stage of an inverted optical microscope
equipped with epifluorescence (Olympus IX71 equipped with a 60× long working
distance objective). The particle tracking experiment was performed in bright-field
configuration, while the fluorescein was imaged in epifluorescence configuration with
an exposure of 200 ms. A constant pressure was applied to the reservoir at the rear of
the capillary for a time interval varying from 1 to 10 min. Flow movies were recorded
with a CMOS camera (Orca-Flash V 4.0, Hamamatsu, 16 bit, 2024 × 2024 pixels,
6.5× 6.5 µm in size). For the particle tracking experiments, a typical run consisted
of 8000–12 000 images, acquired with a frame rate of 200–320 f.p.s. and an exposure
time of 1.5–3 ms. The procedure was repeated for several pressure values, varying
from 20 to 1700 mbar, depending on the dimensions of the glass nanopore. For the
plume imaging experiments, the frame rate was lower (typically 0.7 f.p.s.) due to the
longer exposure (200 ms). A typical fluorescence plume is shown in figure 3(c).

3.2. Landau–Squire flow data analysis
Before exploring the fluorescent plume systematically, we first fully characterized
the Landau–Squire flow in the reservoir. This was investigated with a standard
velocimetry technique, using the polystyrene particles as colloid tracers. This follows
the approach described in Secchi et al. (2016), and details of the experimental and
numerical analysis may be found in the supplementary material of this reference. We
recall briefly the method and outline the main results.

A region in front of the nanocapillary tip with dimensions (dx, dy)= (45, 90) µm
is selected. Image analysis is performed by in-house particle tracking algorithms. The
optics has a depth of field comparable to the particle dimension and the algorithm
analyses only the particles in focus. This allows the plane to be set at z= 0, and the
distance from the nanocapillary tip is r =

√
x2 + y2. In this configuration, we obtain

all the information on the 3D velocity field by analysing the 2D x–y plane passing
through the centre of symmetry of the nanocapillary tip. We show in figure 4(a,b) a
typical example for particle tracking, tracer trajectories, and corresponding velocities.

The particle tracking algorithm provides, for each particle, its position (x, y) and
velocity components, vx(x, y) and vy(x, y). The Landau–Squire theory predicts v =√
v2

r + v
2
θ = (FP/4πη)(1/r′(θ)), with r′(θ) = r × 2/

√
1+ 3 cos2 θ . Accordingly, for

each position (x, y), we calculate r′(θ) and the velocity modulus v. We repeat the
procedure for all of the trajectories. As shown in figure 4(c), a linear relation between
v and 1/r′ is measured, as expected from the Landau–Squire theory. The slope of the
lines allows the jet force FP/4πη to be extracted.

From these experiments, we deduce the pressure dependence of the jet force FP
for a given nanocapillary. The several runs performed at each pressure allow us to
check the stability of the flow during time. As an ultimate check, we also vary the
dimensions of the analysed area (dx, dy), in order to ensure that it does not impact
the estimation of FP. As a final note, it is also possible to analyse the flow in the
plane (x, y, z)= (0, y, z), accounting for the 3D nature of the hydrodynamic problem,
and we find results in agreement with the Landau–Squire flow.

We finally note that once the FP parameter is known for a given pressure 1P, the
flow rate Q can be deduced thanks to a proper calibration of α, via (1.2). This follows
the approach introduced in Secchi et al. (2016), where details can be found in the
supplementary material. We show, in particular, that α depends only on the opening
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FIGURE 4. Velocimetry measurements of Landau–Squire jet flow. (a) Tracer trajectories
outside a nanocapillary at 1P = 140 mbar, revealing a Landau–Squire jet flow. The
dashed box highlights the region where image analysis is performed. (b) Velocity fields
at 1P = 140 mbar. All data are obtained with a nanocapillary with R1 = 200 nm and
γ = 9.7◦. (c) Particle velocity as a function of the position-dependent parameter r′(θ) =
r× 2/

√
1+ 3 cos2 θ for various values of 1P. From bottom to top, 1P= 20, 60, 100, 140

and 180 mbar. Here, the nanocapillary geometry is R1= 320 nm and γ = 12◦. Continuous
lines are fits using v = FP/(4πη)× 1/r′, allowing estimation of FP/4πη.

angle γ of the nanocapillary: α is a decreasing function of the angle γ and vanishes
as the opening angle γ reaches 90◦. We find that in the region of aperture angles γ
used in the experiments, the value of α varies between 0.7 and 1.0. However, once the
geometry is known for a given nanocapillary (e.g. by SEM imaging), the value of α
can be quantitatively predicted for this specific geometry with a 5 % indetermination;
see the supplementary material in Secchi et al. (2016).

3.3. Dispersion by the Landau–Squire flow field
We now turn to the main question of this paper and investigate the dispersion of the
fluorescein solution by the LS flow field. Once a pressure drop 1P is established,
a steady state is reached within a few seconds. We checked separately that at
these concentrations, the fluorescence intensity maps may be directly correlated to
the concentration map of fluorescein and bleaching does not affect our results. We
show in figure 5(a) the evolution of the intensity signal at steady state with increasing
pressure 1P. The cloud of dispersing fluorescein is clearly distorted into a plume-like
shape as the pressure increases, or equivalently as the Péclet number increases. A
striking point is that the plume is observed to extend over hundreds of microns, three
orders of magnitude larger than the typical nanocapillary aperture, with measurable
asymmetry over very long length scales. This is quantified in figure 5(b), where
the extension of the plume in both the longitudinal (1x) and lateral (1y) directions
is plotted for various pressure drops, reaching 100 µm in the present conditions,
while the nanocapillary aperture is 120 nm in this case. Here, the plume extension
is obtained experimentally from an iso-intensity threshold, defined as the line where
the detected intensity is half of the maximum intensity; see the red line in the inset
of figure 5(b). In more detail, we plot in figure 5(c) the spatial evolution of the
fluorescence intensity along the longitudinal axis in front of the nanocapillary (here
normalized by a reference value Iref in the absence of fluorescence). This is shown to
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FIGURE 5. Experimental fluorescence profiles with increasing pressure drop.
(a) Normalized fluorescence maps emerging from a nanocapillary in a deionized
water reservoir at pH8, for increasing pressure drop 1P. The intensity is normalized by
the largest pixel intensity measured. The radius of the nanocapillary is R1 = 120 nm and
its opening angle is γ = 3◦. (b) Longitudinal 1x and lateral 1y extension of the plume
as a function of the pressure drop, defined as the longitudinal and lateral extensions
(respectively red and blue lines in the inset) of the iso-intensity profile (black line) at
maximum intensity of a given map over 2. (c) Intensity on the centre horizontal line in
front of the nanocapillary for increasing pressure drop as a function of the distance r
from the nanocapillary tip. The solid lines are 1/r fits. The inset shows the same profiles
renormalized by the pressure drop.

exhibit a long-range decay, which is well fitted by the predicted 1/r spatial relaxation
in the far field, according to (2.7) for θ = 0. Furthermore, its amplitude is shown
to scale with the pressure drop 1P, as highlighted in the inset of figure 5(c). The
discrepancy at short distances, with a non-monotonic dependence of the intensity,
may be attributed to non-trivial point spread dispersion of the optical set-up, which
we did not explore exhaustively in this paper.

Going further, more quantitative information on the flow can be obtained from the
detailed shape of the iso-intensity lines. Indeed, according to the theoretical prediction
in (2.7), the shape of an iso-intensity line is expected to verify

r(θ)= rmax × exp
[

Pe
2
(cos θ − 1)

]
, (3.1)

with Pe=Fp/4πηD the Péclet number and rmax the maximal extension. In figure 6(a),
we accordingly fit the normalized shape r(θ)/rmax for various pressure drops using
this expression. As shown in figure 6(a), the profiles are well described by the
theoretical prediction using the Péclet number as a single parameter for each pressure
drop. Interestingly, the back-diffusion of the plume shape for θ =π is shown to vary
strongly with the pressure drop, in particular for small 1P; see figure 6(a). This is in
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FIGURE 6. Experimental plume shapes and Péclet number. (a) Normalized iso-intensity
profiles with increasing pressure drop (coloured dots). The profiles are fitted according to
the theoretical prediction with Pe as the only fitting parameter (nanocapillary with R1 =

115 nm and γ =3◦). The grey line is the unit circle. (b) The LS force parameter Fp/4πη=
D × Pe for the same nanocapillary, measured from both fluorescence and velocimetry
techniques plotted versus the pressure drop 1P. For the fluorescence technique, FP is
deduced from the values of the Péclet number extracted from the fluorescence profiles
in (a). For the velocimetry approach, it is extracted from the analysis of the LS flow, as
in figure 4. We also report the results obtained from a finite-element calculation (crosses).
The shaded area corresponds to a 0.5◦ uncertainty on γ . The error bars on the fluorescence
technique are defined by the variability according to different iso-intensity values.

full agreement with the prediction r(θ = π)/rmax = exp[−Pe] in (3.1). Back-diffusion
provides, therefore, a sensitive probe of the Péclet number, in particular for low Pe.

In figure 6(b), we then plot the extracted LS force Fp/4πη=D× Pe as a function
of the pressure drop 1P, showing an expected linear dependence on pressure drop
(for small pressure drop); D is the fluorescein diffusion coefficient (D= 425 µm2 s−1

(Culbertson, Jacobson & Ramsey 2002)). To assess these results, we compare the
pressure dependence of the LS force Fp with alternative measurements obtained
from the direct tracking of colloidal particles; see § 3.2. The comparison between
the two shows a very good agreement; see figure 6(b). For completeness, we also
compare these values with the Stokes prediction in (1.2), with the parameter α

obtained from numerical finite-element calculation for the nanocapillary geometry
under consideration. The latter was obtained along the same lines as in Secchi et al.
(2016), supplementary material. We emphasize that no fitting parameter is used to
compute this estimate.

All three estimates are found to be in very good agreement, confirming that the
fluorescence measurement is a proper tool to extract flow information in this Landau–
Squire geometry.

4. Summary and concluding remarks

In this paper, we have explored experimentally and theoretically the plume
generated by a dye dispersed from a jet flow emerging from the tip of a nanocapillary
into a large reservoir, here named the Landau–Squire plume. We have analytically
predicted and experimentally assessed the solute concentration profile in the form
C(r, θ) ∼ 1/r × e(Pe/2)(cos θ−1), where Pe = Fp/4πηD is the Péclet number associated
with the Landau–Squire flow. A key remark is that Pe depends only on the flow
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characteristics inside the tube, since Pe∝R1v/D is defined in terms of the (nanoscale)
tube properties, with v the averaged flow inside the tube with radius R1.

The concentration profile thus combines a long-range 1/r power-law decay –
with an amplitude linear in the flow rate Q – with an exponential dependence of
the azimuthal plume shape on the Péclet number Pe. This contrasted dependence
makes the shape of the dye plume very sensitive to the flow occurring inside the
tube, while being measurable at very long distances from the tip, much longer than
the characteristic tip size. This point is particularly obvious in figure 5, where the
asymmetric plume extends over hundreds of microns, three orders of magnitude
larger than the typical nanocapillary aperture. In practice, a useful remark is that
the back-diffusion of the plume shape (for θ = π) is exponentially dependent on the
Péclet number and thus constitutes a sensitive measurement of Pe, in particular for
low Péclet number. Altogether, the Landau–Squire plume bridges the gap between the
nanoscale tube flow and the micron scales at which it can be easily characterized.

This feature is a key asset for the measurement of ultra-small flow rates occurring
in nanoscale pipes thanks to the dye plume properties. Indeed, the criterion of
detectability via the plume is that the Péclet number, which, we emphasize, is
defined in terms of inner tube flow properties, is larger than unity. This criterion is
much less stringent than direct velocimetry inside the nanochannel and is definitely
reachable even for tubes with diameters in the range of nanometres (and even more
for tubes that exhibit surface slippage such as carbon nanotubes; see Secchi et al.
2016).

Provided that they are successfully attached to the tip of the nanocapillary, the flow
through various nanoporous systems can be investigated using analysis of the plume
they generate, from small nanotubes to biology-inspired nanosystems like porins.
Moreover, other sources of driving, like electro-osmosis or diffusio-osmosis, can also
be explored using the same technique. The Landau–Squire plume is a powerful and
versatile tool for nanofluidics.
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