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Observing finite regions of a bigger system is a common aim, from microscopy to

molecular simulations. In the latter especially, there is ongoing interest in predicting

thermodynamic properties from tracking fluctuations in finite observation volumes.

However, kinetic properties have received little attention, especially not in ionic

solutions, where electrostatic interactions play a decisive role. Here, we probe ionic

fluctuations in finite volumes with Brownian dynamics and build an analytical framework

that reproduces our simulation results and is broadly applicable to other systems with

pairwise interactions. Particle number and charge correlations exhibit a rich

phenomenology with time, characterized by a diversity of timescales. The noise

spectrum of both quantities decays as 1/f3/2, where f is the frequency. This signature of

fractional noise shows the universality of 1/f3/2 scalings when observing diffusing

particles in finite domains. The hyperuniform behaviour of charge fluctuations, namely

that correlations scale with the area of the observation volume, is preserved in time.

Correlations even become proportional to the box perimeter at sufficiently long times.

Our results pave the way to understand fluctuations in more complex systems, from

nanopores to single-particle electrochemistry.
Microscopy techniques, from dynamic light scattering1 to uorescence correla-
tion spectroscopy,2 generally rely on observing a small part of a much bigger
underlying system. Understanding macroscopic properties from information at
these scales, due in part to important uctuations, is a major experimental
challenge. For this reason, there is a long history in theory and simulations,
especially in molecular simulations, in tracking uctuations on a small volume of
an underlying larger simulation domain (see also Fig. 1).3–6 The larger simulation
domain serves as a reservoir for particles allowing one to probe behaviour within
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Fig. 1 Ionic fluctuations in finite observation volumes. (a) Brownian dynamics simulation,
here for a C0 = 52 mM salt solution in a cubic, triply periodic simulation domain. Yellow
(blue) particles represent cations (anions). The dark gray cube is a finite observation
volume, here, one of the 64 boxes of size Lobs = Lsim/4. (b) Within the observation box, the
number of particles N = n+ + n− and the chargeQ = q(n+ − n−) fluctuate, where n+ (n−) is
the number of positive (negative) charges.
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the grand canonical ensemble,4,6,7 without resorting to complex insertion/deletion
rules.3,7–10

In the static limit, uctuations in nite observation volumes give access to
various thermodynamic properties. Charge uctuations in coulombic systems
can quantify screening properties.6,11–18 Fluctuations of water molecules in
observation volumes near interfaces can probe surface hydrophobicity and
solvation free energies.5,19,20 More generally, density uctuations integrated over
increasing volumes correspond, in the limit of innite volumes, to Kirkwood–Buff
integrals21 from which it is possible to extract various thermodynamic properties
of the uid such as partial molar volumes, compressibility, and chemical
potentials.3,4,21–24

In contrast, resolving uctuating dynamics in nite observation volumes has
received less attention. Yet, Green–Kubo integrals – the kinetic counterpart of
Kirkwood–Buff integrals – give access to various dynamic properties. Integration
of uctuating uxes over an entire domain enables to probe conductivity, per-
meance, friction on surfaces, and more,25–41 including far from equilibrium.42–45

The relevance of Green–Kubo integrals over sub-volumes has only recently been
raised, particularly to coarse-grain molecular dynamics near interfaces.46

Numerous coarse-graining techniques, from Mori–Zwanzig approaches to (uc-
tuating) Lattice-Boltzmann or uctuating hydrodynamics, which are crucial to
access mesoscale dynamics,47 rely on a detailed understanding of uctuations in
nite volumes.30,48–57

The study of ionic uctuations in nite volumes is especially intriguing.
Without electrostatic interactions, particle number uctuations at a steady state
should scale like the average number of particles in the observation volume,
∼Lobs

3 if Lobs is the corresponding observation size. However, uctuations of the
charge Q are dramatically screened by electrostatics and scale with the area of the
observation volume for sufficiently large volumes, hQ2i ∼Lobs

2 (ref. 12–18) –
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a generic phenomenon termed hyperuniformity.58–62 How does this screening
behaviour pertain in time?

Furthermore, dynamic features of electrolytes, such as conductivity, are not
characterized by a universal timescale. An ion’s self-diffusion coefficient D –

related to its mobility – and the Debye screening length lD – which quanties
the length scale of electrostatic interactions – dene the characteristic timescale
sDebye = lD

2/D for the relaxation time of uctuations in a bulk electrolyte.
However, other length scales, such as, here, the size of the observation volume,
Lobs, provide other timescales, such as sDiff = Lobs

2/D, the time to diffuse
across the nite volume. De facto, various mixed timescales, as a combination
lD

nLobs
2−n/D with n a real number, will also play a role, as was seen in the char-

ging dynamics of two parallel plates separated by a distance L playing the role of
Lobs here.32,63–65 Which timescale dominates uctuations in nite volumes?

Here, we use a combination of Brownian dynamics simulations and analytical
calculations to rationalize ionic uctuations in nite volumes (Section 1). We
probe (see Fig. 1) the particle number N and charge Q in cubic observation
volumes of side Lobs, smaller than the overall system size, for an electrolyte at
various concentrations, at equilibrium. The correlations in the particle number
uctuations N, decay algebraically in time and are not affected by electrostatics
(Section 2). In contrast, charge uctuations Q strongly depend on electrostatic
interactions (Section 3). In the static limit, we recover hyperuniformity when the
observation volume is much larger than the Debye length Lobs [ lD. The
dynamic response of charge correlations encompasses a rich phenomenology that
depends on the separation of length scales. To li this ambiguity, we introduce
a global timescale, dened as a weighted integral over the structure factor (eqn
(13)), which quanties the impact of either length scale on the relaxation time.
The noise spectrum of both Q and N features a characteristic decay as 1/f3/2 where
f is the frequency, a signature of fractional noise,66 showing that such noise is
a universal property of diffusing particles observed in nite volumes. The present
framework can describe uctuations in nite volumes for particles with different
pairwise interactions, which allows us to discuss our results in the broader
context of coarse-graining techniques, hyperuniformity, and electrochemical
noise in conned geometries (Section 4).
1 Methodological overview
1.1 Numerical methods

We perform Brownian dynamics (BD) simulations of model electrolyte solutions
(see Fig. 1a). Specically, we solve overdamped Langevin equations to describe the
stochastic ion motion in an implicit solvent

dxi

dt
¼ � Di

kBT

X
jsi

VVCoul
ij

�kxi � xjk
�þ ffiffiffiffiffiffiffiffi

2Di

p
hiðtÞ (1)

where xi is the 3D position of particle i, Di its diffusion coefficient, kBT the thermal
energy and hi a 3D Gaussian white noise representing the action of the implicit
solvent on the ions (such that hhx,ii = 0 and hhx,i(t)hx′,j(t′)i = d(t − t′)dxx′dij where x
here indicates the xth component of the vector hi). V

Coul
ij corresponds to Coulomb

interactions
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VCoul
ij

�
r ¼ kxi � xjk

� ¼ qiqj

4p303wr
(2)

where qi is the charge of particle i, 30 is the vacuum permittivity, and 3w the relative
permittivity of the uid. To avoid ionic collapse, we also add pairwise short-range
repulsive interactions (not specied in eqn (1), see details in Appendix A). We use
parameters to describe a typical symmetric salt solution, here KCl in water,
broadly used in experiments:25,31,67–71 q+ = e = −q− h q where e is the elementary
charge, D+ = D− = D = 1.5 × 10−9 m2 s−1 and 3w = 78.5. We conduct simulations
with N0 = N+ = N− ion pairs enclosed in a cubic simulation domain of side Lsim =

16 nm and periodic boundary conditions. The salt concentration is therefore,
C0 = N0/Lsim

3. Additional simulation details may be found in Appendix A.
Here, we have chosen minimal interactions between ions; in particular, we have

neglected hydrodynamic interactions72 to isolate the effect of electrostatic interac-
tions. In a companion paper,73 we found that the same BD simulations, in a ∼1 M
aqueous electrolyte solution, compared with molecular dynamics simulations,
capture well the main features of the dynamic structure factor of charges. However,
deviations are observed for intermediate wavenumbers, which can be partially
improved by improving the description of static correlations. Electrostatic and
hydrodynamic interactions can be jointly addressed with either lengthy molecular
dynamics or faster Brownian dynamics of ions with a uctuating implicit
solvent.74,75 The study of hydrodynamic interactions (albeit in the absence of elec-
trostatics) will be the focus of a further study76 using uctuating hydrodynamics.77,78

Our goal in this work is to understand the dening features of the uctuating
number of particles N= n+(Lobs) + n−(Lobs) and the charge Q= q[n+(Lobs)− n−(Lobs)]
in cubic observation volumes of side Lobs within the simulation domain (see
Fig. 1a); where n±(Lobs) refer to the number of positively (negatively) charged
particles in the observation volume. Recording particle positions, we nd that the
two quantities uctuate in time (see Fig. 1b) taking discrete values, either around
the average box occupation hNi = 2C0Lobs

3 or the average zero charge hQi = 0. To
analyze their statistical properties, we examine their static CN(0), CQ(0) and
dynamic correlations, CN(t) = hN(t)N(0)i − hNi2 and CQ(t) = hQ(t)Q(0)i. Here, we
have checked that bothN andQ follow Gaussian distributions around their average
values, which means relevant insight can be obtained without considering higher-
order correlations. Yet, in different geometries, such as near interfaces, we might
expect deviations from Gaussian distributions, which can be exploited to calculate
other thermodynamic quantities (see e.g. ref. 5 and 19 for the link between water
density uctuations and the hydrophobic/hydrophilic character of surfaces).
1.2 Stochastic density functional theory

To quantify particle statistics in boxes, we also rely on analytical calculations that
introduce at the mean-eld level, the same physical ingredients as in the BD simu-
lations. Let C(x,t) and r(x,t) be the number and charge density elds, respectively, so
that the instantaneous number and charge in the observation volume V obs are

NðtÞ ¼
ð
V obs

Cðx; tÞdx and QðtÞ ¼
ð
V obs

rðx; tÞdx: (3)

In the following, we also consider c(x,t) = C(x,t) − 2C0, the excess density
relative to the mean background ion density 2C0. While there are diverse
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strategies to calculate the statistical properties of N and Q,3,66,72 stochastic density
functional theory (sDFT)79,80 stands out here for its simplicity. sDFT directly
describes the uctuations on the continuous elds C(x,t) and r(x,t) due to indi-
vidual particle diffusion, and has been successfully applied to electrolytes to
recover Onsager relations.81 It is also especially suited to extract kinetic proper-
ties.82,83 Starting from Poisson–Nernst–Planck equations, using sDFT to introduce
uctuations on individual particle elds, and then assuming uctuations are
small compared to the background density (jcj ∼ jr/qj � C0), the elds satisfy838><

>:
vtc ¼ DV2cþ

ffiffiffiffiffiffiffiffiffiffiffiffi
4DC0

p
V$hc

vtr ¼ DV2r�D
1

lD
2
rþ

ffiffiffiffiffiffiffiffiffiffiffiffi
4DC0

p
V$hr

(4)

where lD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT303w
q2ð2C0Þ

s
is the Debye screening length, and the hX (for X ˛ {c,r}) are

3D Gaussian white noises with uncorrelated components (see Appendix B for
a short derivation).

Within this framework, we can obtain the structure factors for the density (X =

c) and the charge (X = r). They are best expressed in Fourier space. If ~X(k,u) is the
Fourier transform of X(X,t),† where k is the wavenumber and u the frequency,
then

h ~X (k,u) ~X (k′,u′)i = 2C0q
2
X(2p)

4SXX(k,u)d(u + u′)d3(k + k′) (5)

where qr
2 = q2 = e2 here, qc

2 = 1, and SXX(k,u) is the structure factor. For both
elds, we nd

SXX ðk;uÞ ¼ 2Dk2

u2 þ �Dk2
�
Sstatic
XX ðkÞ�2

with static structure factors Sstatic
cc ðkÞ ¼ 1;Sstatic

rr ðkÞ ¼ k2

k2 þ kD2

(6)

where k = jkj and kD = 1/lD. Eqn (6) for the static charge structure factor
Sstaticrr (k) corresponds to the classical result of Debye–Hückel,73,84 which is expected
since linearized sDFT yields the lowest order coupling between diffusion and
electrostatics, i.e. dynamics close to equilibrium. More generally, the dynamic
structure factor expression in eqn (6) holds for various elds, as long as they
derive from Markovian (no memory) and Gaussian processes (forces are conser-
vative and derive from an energy that is quadratic in the eld).73,76,85 The present
formalism can thus easily be extended to study different pairwise interactions,
such as steric interactions. Still, it should be modied to account e.g. for hydro-
dynamic interactions.36,72,76–78

The correlations of N and Q are then simply given by8>>>><
>>>>:

CNðtÞ ¼
ðð

V obs

�
cðx; tÞc�x0

; 0
��
dxdx

0 ¼ Lobs
3

ðð
dkdu

ð2pÞ4e
iutfV ðkÞSccðk;uÞ;

CQðtÞ ¼
ðð

V obs

�
rðx; tÞr�x0

; 0
��
dxdx

0 ¼ Lobs
3

ðð
dkdu

ð2pÞ4e
iutfV ðkÞSrrðk;uÞ;

(7)
† With the convention that ~X(k,u) = !!e−iute−ik$xX(x,t)dxdt.
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here

fV ðkÞ ¼ 1

Lobs
3

ðð
dxdx

0
eik$ðx�x0Þ (8)

is a geometrical volume factor that accounts for the shape of the observation box
in Fourier space. Eqn (7) extends Kirkwood–Buff type integrals beyond the static
regime.3,4,11,17,18,22 In addition, compared to previous calculations for the static
case which were conducted in real space,3,4,11,17,18,22 calculations in Fourier space
are more straightforward. Here, we will focus on cubic observation boxes where
statistical analysis can be sped up. However, we expect our results to persist for
other geometries, especially the scaling laws we unravel. We demonstrate the
generality of these scalings in Appendix D, where we show analytically that they
also apply to spherical observation volumes.
2 Particle number correlations decay
algebraically with time

We start by analyzing particle number correlations, CN(t) = hN(t)N(0)i − hNi2, and
present BD simulation results for various observation box sizes in Fig. 2a (trian-
gles). We nd that correlations decay with time due to particle exchanges between
the observation box and the rest of the simulation domain. With larger obser-
vation boxes, correlations increase in magnitude since more particles participate
in the uctuations. To rationalize this behaviour, we use the sDFT framework.
Inserting the expression of eqn (6) in eqn (7) we nd, aer integration (see
Appendix C),
Fig. 2 Algebraic decay of particle number fluctuations. (a) Particle number correlations
with time, ranging from light blue to dark blue for increasing observation box size.
Brownian dynamics results are shown as triangles, with shaded areas indicating one
standard deviation around the mean, while lines are predictions from eqn (9). (b) Rescaled
(a) plot showing algebraic decay at long times, as 1/t3/2. (c) Associated frequency spectrum
with the 1/f3/2 signature of fractional noise.66 Here, C0 = 104 mM; coloured legends are
shared across (a–c).
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CNðtÞ ¼ hNi
�
fN

	
4Dt

Lobs
2


�3
;

where fN

	
t

sDiff

h
4Dt

Lobs
2



¼

ffiffiffiffiffiffiffiffiffiffiffiffi
t

sDiffp

r �
e�sDiff=t � 1

�þ erf

	 ffiffiffiffiffiffiffiffiffi
sDiff

t

r 

:

(9)

We compare BD results with eqn (9) in Fig. 2a (symbols and lines, respectively).
The excellent agreement shows that sDFT is indeed well suited to predict particle
number uctuations.

Eqn (9) shows that number uctuations scale with the average number of
particles in the observation box, hNi, and are determined by a single timescale
sDiff = Lobs

2/4D corresponding to particle diffusion across the observation box.
This is conrmed in Fig. 2b, which shows that all BD results collapse on a master
curve, well described by eqn (9), when rescaled by hNi and time by sDiff.
Furthermore, we nd that the correlations decay algebraically as t−3/2 at long
times. Expanding eqn (9) we nd CN(t)/hNi = (sDiff/pt)

3/2, which conrms the
exponent of the algebraic decay. This slow relaxation of the correlations indicates
that particle rearrangements are slow with time due to their diffusive or Brownian
nature.

Finally, the noise spectrum SN( f) associated with N(t), reported in Fig. 2c,
decays at high frequencies as 1/f 3/2, a signature of fractional noise. This 3/2
exponent is not related to the long-time algebraic decay of the correlations;
rather, it corresponds to the early time behaviour as CNðtÞ=hNix1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t=psDiff
p

.
Overall, the statistical properties of N(t) are thus characteristic of a so-called
fractional Brownian walk, with “diffusion coefficient”

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=psDiff

p
and Hurst

index H = 1/4.86,87 The physical origin of this peculiar mathematical property
comes from boundary crossings, here, that of the observation volume. Similar
fractional noise signatures were predicted in 1D for Brownian particles with no
interactions.66 Remarkably, here this fractional feature pertains in 3D, with
particle interactions, showing that fractional noise is a universal property of
Brownian motion, which arises as soon as a quantity involves particles crossing
boundaries.

Surprisingly, our results for particle number uctuations do not depend on
electrostatic properties. While this is somewhat expected at low enough salt
concentrations C0, steric effects should modify number uctuations at high
concentrations. Steric effects result in oscillations of the static structure factor,84,88

that are only weakly captured by BD 73 and not at this stage with sDFT in eqn (6).
Steric effects can, however, be captured by improving the expression of the static
structure factor analytically88–90 or by tting numerically obtained structure
factors73 and will be the object of future work.76
3 Exotic signatures in charge fluctuations

We now turn to charge uctuations within nite observation volumes.
3.1 Hyperuniformity in the static regime

We rst revisit static charge uctuations in an observation volume, CQ(0) = hQ2i,
to lay the ground for time dependence. For sufficiently small Lobs, BD results
This journal is © The Royal Society of Chemistry 2023 Faraday Discuss., 2023, 246, 225–250 | 231
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indicate that charge uctuations scale with the volume, CQ(0) ∼ Lobs
3, hence like

the average particle number in that region (Fig. 3a, circles). In contrast, for large
Lobs, and especially at high concentrations, uctuations scale only with the area of
the probe volume, CQ(0) ∼ Lobs

2. This peculiar behaviour was predicted theoret-
ically by Martin and Yalcin12 then veried with Monte Carlo simulations.13,16–18

The property that number uctuations over an observation volume scale with the
area is nowadays termed hyperuniformity, and is a generic feature of particle
systems with long-range 1/r interactions, where r is the interparticle distance.60–62

We may rationalize this behaviour with sDFT: from eqn (7), static charge
uctuations integrate the static structure factor as

CQð0Þ ¼ q2hNi
ð

dk

ð2pÞ3 fV ðkÞS
static
rr ðkÞ

¼ q2hNi
ð

dk

ð2pÞ3 fV ðkÞ
k2

k2 þ kD2

(10)

where we recall that hNi = 2C0Lobs
3 is the average particle number in the box,

kD = 1/lD and fV ðkÞ is a geometric factor, see eqn (8). CQ(0) depends only on the
ratio Lobs/lD. Formally, if Lobs � lD the dominant part of the spectrum will be for
values k [ kD, and expanding eqn (10) one obtains CQ(0) ∼ q2hNi = 2C0q

2Lobs
3

Fig. 3 Static charge fluctuations are hyperuniform. (a) Static charge fluctuations with
observation box size Lobs for increasing salt concentrations, going from purple to yellow.
Dots: results from BD simulations; lines: eqn (10); error bars are one standard deviation
about the mean and are smaller than dot sizes. (b) Rescaled plot (a) showing data collapse,
highlighting “entropic” and “enthalpic” regimes. (c) Sketch of the origin of fluctuations, in
2D for simplicity, in both regimes (see text for details). Fluctuations growing as the area of
the observation volume in the enthalpic regime are, by definition, hyperuniform.
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(see Appendix C). In contrast, when Lobs [ lD, further expansions yield CQ(0) ∼
2cQC0q

2Lobs
2lD where cQ = (16p)1/3 x 3.7 (cQ usually depends on box geometry,

see Kim and Fisher17 and also Appendix D). Fig. 3b shows that rescaling CQ(0) by
Lobs

2lD and Lobs by lD indeed collapses all results on a master curve. The present
framework thus shows that hyperuniformity is not just a property of the system
itself but also a property of the observation scale (Lobs) relative to the scale of the
interactions (lD).

This behaviour can further be interpreted with an energetic approach, as
described by several authors.11,13,16 When Lobs � lD, at the observation scale Lobs,
electrostatics do not govern ionic structure. Hence, one can simply place particles in
the observation volume without concern for their respective charge, among
the diversity of particle arrangements (see Fig. 3c). Fluctuations are dominated by
entropy, and as in any such statistical physics framework, uctuations scale
like the average number of particles in the observation volume. In contrast, when
Lobs [ lD, an inner, neutral region of the observation volume exists where charges
are balanced. The remaining degree of freedom is at the interface, within a thin
shell around the neutral region of thickness lD, and uctuations are dominated by
the energetic cost to charge the interface. Hence uctuations scale as Lobs

2lD and
can be viewed as dominated by enthalpy. This entropic/enthalpic interpretation is
similar to solute particle uctuations in a liquid, where the free energy cost to create
a spherical cavity scales with the volume for small radii and the area for large radii,
with a cross-over around 1 nm in water.5 Since this free energy cost has proved
useful to characterize the hydrophilic/phobic behaviour of interfaces from the local
water density uctuations,19,20,91 it might be relevant to further explore this analogy
in the case of charged systems.
3.2 Charge uctuations with time: timescales and hyperuniformity

Wenow turn to the relaxation of charge correlations by consideringCQ(t)= hQ(t)Q(0)i.
Fig. 4a displays the BD results for a xed salt concentration and various observation
volumes, rescaled by q2hNi. At early times, correlations collapse for small Lobs (light
orange) but not for large ones (dark red), a natural consequence of the above-
discussed static (t = 0) hyperuniformity. Surprisingly, at long times, we observe the
opposite behaviour: correlations collapse for large Lobs but not for small ones.
Furthermore, the decay of charge correlations for large Lobs is not algebraic, in
contrast with number uctuations, but exponential (see Fig. 4b).

We can obtain direct insight on the exponential decay using sDFT. Integrating
eqn (7) over u yields

CQðtÞ ¼ q2hNi
ð

dk

ð2pÞ3S
static
rr ðkÞe�Dk2t=Sstatic

rr ðkÞfV ðkÞ

¼ q2hNie�t=sDebye

ð
dk

ð2pÞ3
k2

k2 þ kD2
e�Dk2tfV ðkÞ

(11)

where the Debye time sDebye = lD
2/D corresponds to the time to diffuse across the

Debye length scale. Eqn (11) reproduces remarkably well the BD results (see Fig. 4,
lines). For sufficiently large Lobs, the correlations decay exponentially with char-
acteristic timescale, sDebye. Indeed, the relaxation of charge uctuations is
primarily driven by electrostatics: the transient local breakdown of electro-
neutrality induces an internal electric eld driving the ions (with a mobility
This journal is © The Royal Society of Chemistry 2023 Faraday Discuss., 2023, 246, 225–250 | 233



Fig. 4 Charge fluctuations decay exponentially for large observation volumes. (a) Charge
fluctuations rescaled by hNi, with time, for increasing Lobs from yellow to dark red. Dots:
results from BD simulations with shaded areas indicating one standard deviation around
the mean; lines: eqn (11). (b) Same as (a) in log scale to highlight the exponential decay for
large Lobs. Here, C0 = 104 mM and lD = 0.95 nm.
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qD/kBT) to restore electroneutrality. There are clearly other timescales involved in
the relaxation, especially for small Lobs. As mentioned in the introduction, the
interplay between sDebye and sDiff can produce a variety of timescales that could all
explain part of the behaviour.32,63–65 To understand the relaxation behaviour more
systematically, we explore in Fig. 5 the relaxation of CQ(t)e

t/sDebye. Since BD results
are well captured by sDFT over a broad range of parameters, we use analytical
expansions of eqn (11) to quantify the dependence of the results on lD and Lobs.

Fig. 5a rst reports the case of small observation volumes compared to the Debye
length Lobs � lD. Beyond the initial static regime where CQ ∼ Lobs

3, when t T sDiff,
we nd, expanding eqn (11), that the correlations decay as CQ ∼ Lobs

3(sDiff/t)
3/2 (see

Appendix C). This decay exactly follows that of the particle number decay in Fig. 2b.
At this observation length scale and timescale, electrostatics do not play any
role, and the only relevant timescale appears to be sDiff. Eventually, at longer times,
t T sDebye, correlations decay faster as CQ ∼ LobslD

2e−t/sDebye(sDiff/t)
5/2, and the Debye

timescale sDebye appears to govern charge uctuation relaxation. As explained above,
this timescale emerges due to restoring electrostatic forces that damp uctuations
arising from diffusion.

How do these effects survive when the length scales, Lobs [ lD, and hence the
timescales sDebye � sDiff are reversed? In Fig. 5b, we show BD results with
parameters Lobs x 2lD, which is already hard to achieve with reasonable
simulation times. Beyond the static hyperuniform regime where CQ ∼ Lobs

2lD, for
tT sDebye we nd CQ ∼ Lobs

2lDe
−t/sDebye(sDebye/t)

1/2. The decay of the correlations is
apparently entirely due to electrostatic effects, with sDebye the relevant timescale,
and is faster than the exponential. Finally, for t T sDiff, when particles have
had time to diffuse across the observation volume, sDiff appears in the dynamics,
as CQ ∼ LobslD

2e−t/sDebye(sDiff/t)
5/2.

Curiously, at long times, correlations decay as CQ ∼ LobslD
2e−t/sDebye(sDiff/t)

5/2 in
both the Lobs � lD and Lobs [ lD regimes. At such long timescales, particles have
diffused over distances long enough that lD and Lobs appear comparably small.
Remarkably, the amplitude of the uctuations now scales with the perimeter Lobs
234 | Faraday Discuss., 2023, 246, 225–250 This journal is © The Royal Society of Chemistry 2023



Fig. 5 A variety of timescales emerge in charge correlation relaxation. (a) Charge corre-
lations rescaled by et/sDebye for Lobs � lD. Vertical dotted orange and blue lines indicate
scaling law intersections, as t = sDiff/p and t = 3sDebye/2, respectively. (b) Similar to (a) but
for Lobs[ lD. The vertical dotted orange and blue lines indicate t ¼ ffiffiffi

3
p

sDiff=ð27=6p5=12Þ and
t= 4sDebye/p

2, respectively. (c) Rescaled charge correlations at long time, with scaling law,
CQ ∼ Lobs. In all panels: dots: results from BD simulations with shaded areas (or error bars)
indicating one standard deviation around the mean; lines: eqn (11). Slight discrepancy
about t= 1000 ps in (b) between simulations and theory can be attributed to steric effects.
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of the observation domain, which we verify numerically in Fig. 5c. Note, that the
collapse of the data onto the scaling law is not perfect, since we are limited in time
with simulations and the time investigated is not always much bigger than sDebye,
sDiff for all parameters (C0, Lobs). This extreme long-time scaling appears to be
a case of hyperuniformity, where the dimensional degree of hyperuniformity is
increased because uctuations have relaxed. It is tempting to interpret this result
in the following way: at long times, only boundary crossings in volume elements
surrounding cube edges with area lD

2 matter. This open interpretation could be
formally addressed, for example, by investigating the spatial relaxation of uc-
tuations. Finally, with this curious scaling, we might expect that for quasi-2D
electrostatics, such as in extremely conned systems,92,93 uctuations should
have the same amplitude at long times. This resonates, more generally, with the
peculiar behaviour of uctuations conned to 2D, from thermal Casimir forces to
memory effects.93–95
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Notably, in deriving such scaling laws, there are various ways one can non-
dimensionalize time; hence, the relevant timescale is ambiguous. For example,
at long times, the scaling law for charge correlations can be written in several ways

CQðtÞt[sDiff ;sDebye
� LobslD

2
�sDiff

t


5=2
e
� t
sDebye

¼ Lobs
2lD

	
sDiff

4=5sDebye
1=5

t


5=2

e
� 1
sDebye ¼ . (12)

To interpret these scalings, we generally assume a rule of aesthetic simplicity;
at long times, this corresponds to CQ ∼ LobslD

2(sDiff/t)
5/2e−t/sDebye. However, this

ambiguity highlights the diversity of timescales at play. Together with the variety
of scaling laws uncovered in Fig. 5, this naturally raises the question of under-
standing which timescale dominates the relaxation of charge uctuations.

3.3 Universal timescale to characterize relaxation of uctuations

We, therefore, dene a global, unambiguous, relaxation timescale for charge
uctuations as

TQ ¼
ðN
0

CQðtÞ
CQð0Þdt ¼

LQ
2

D
; where LQ

2 ¼

Ð dk

ð2pÞ3
Sstatic
rr ðkÞ2
k2

fV ðkÞ
Ð dk

ð2pÞ3S
static
rr ðkÞ fV ðkÞ

(13)

where the last equality comes from eqn (10) and (11). When calculating TN, using
i.e. eqn (13) but with the structure factor Sstaticcc (k) = 1 for the particle number
uctuations, we nd TN x sDiff, which means that eqn (13) is indeed suited,
a priori, to uncover a relevant relaxation timescale of the system. Interestingly,
introducing TQ means introducing a characteristic length scale LQ, quantifying
how far a particle should diffuse before correlations decay.

We plot TQ as the BD correlations integrated in time in Fig. 6a (dots), together
with eqn (13) (line). All BD results for TQ collapse on a single master curve when
presented against one characteristic timescale, here sDebye/TQ, as a function of the
separation of length scales lD/Lobs. Unsurprisingly, for lD � Lobs, we nd TQ ∼
sDebye, while for lD [ Lobs, TQ ∼ sDiff, showing that the relevant timescale for the
correlations is always the smallest one (see also Appendix C). However, there is
a broad intermediate region where TQ spans a combination of both timescales –
resonating with other studies which also nd numerous timescales to charac-
terize the charge of electrodes.32,63–65

The global timescale TQ accounts remarkably for the relaxation of charge
correlations. Fig. 6b shows that rescaling the time by TQ collapses the simulation
results for normalized charge uctuations, except for times approaching TQ, where,
as we have seen in eqn (12), the correlation function can only be described with
scaling laws involving multiple timescales. The relevance of TQ is also apparent in
the power spectrumof charge uctuations SQ(f) rescaled by TQ (Fig. 6c). We nd that
uctuations plateau at low frequencies, as SQ(f = 0) = CQ(0)/TQ, containing the
information of static hyperuniformity and relaxation time. The plateau thus
corresponds to the equilibration of particles inside and outside the observation box
at long enough times t T TQ. At large frequencies, uctuations decay as 1/f3/2,
236 | Faraday Discuss., 2023, 246, 225–250 This journal is © The Royal Society of Chemistry 2023



Fig. 6 A global timescale TQ, defined by eqn (13), accounts for relaxation of charge
fluctuations. (a) sDebye/TQ as a function of lD/Lobs for increasing salt concentrations, from
purple to yellow. The scaling behaviour of TQ is highlighted in both limit regimes; line: eqn
(13). (b) Charge correlations, from Fig. 4, rescaled by static charge correlations, with time
rescaled by TQ. Increasing observation box sizes, from yellow to dark red, for C0 =

104 mM. (c) Power spectrum of (b), as a function of frequency. In all plots, dots: BD data;
error bars are one standard deviation around the mean.
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similar to number uctuations. This decay occurs for frequencies typically larger
than 1/TQ, showing that TQ determines how long correlations persist in the obser-
vation box, or determines the length scale, LQ ¼ ffiffiffiffiffiffiffiffiffi

DTQ
p

to diffuse across before
correlations are lost. Again, the 1/f3/2 is a signature of fractional noise and shows
that this universal behaviour can be seen regardless of the details of pairwise
interactions.

The collapse of timescales on a single master curve spanning all intermediate
combinations of sDebye and sDiff is strikingly similar to the result of a recent study,
including some of the authors of the response to an oscillating electric eld of an
electrolyte conned between two plates separated by a distance L.32 There, the
critical timescale dening a conducting or insulating behaviour, typically the time
to “charge” the plates by transporting the ions, is either close to sDebye or sDiff= L2/D
according to the separation of length scales lD/L, and spans all intermediate
regimes. Remarkably, here in an equilibrium and bulk context, this behaviour
remains, showing the universality of such response in electrolytes.
4 Conclusions and discussion

In this work, we have investigated ionic uctuations in nite observation volumes,
in the dilute regime and at equilibrium. With Brownian dynamics simulations and
analytical calculations, we have probed the relaxation of correlations in the particle
number N and charge Q in the observation volume. For charges, correlations decay
with a timescale depending on the separation of length scales between the size of
the observation volume Lobs and the Debye screening length lD: ranging from the
time to diffuse across the box sDiff = L2/4D to the time to diffuse across the Debye
This journal is © The Royal Society of Chemistry 2023 Faraday Discuss., 2023, 246, 225–250 | 237
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length sDebye= lD
2/D, and spanning combinations in between. The decay of charge

correlations at long times is exponential. In contrast, for particle number, corre-
lations decay algebraically with a single timescale sDiff, independently of electro-
statics. We nd that charge correlations are hyperuniform when the size of the
observation volume is much larger than the Debye length (Lobs [ lD). Hyper-
uniformity persists in time and is even exacerbated at long times, including for
small boxes. Finally, both N and Q feature a 1/f3/2 decay in their power spectrum,
a signature of fractional noise, showing the universality of such traces when
observing particles diffusing in nite volumes.

4.1 Beyond Debye–Hückel: generality of the approach

Stochastic density functional theory remarkably reproduced simulation results
and is applicable to a few more complex systems. In fact, the present analytic
theory depends only on the static structure factor of the quantity of interest X,
SstaticXX (k). As long as the dynamic structure factor in eqn (6) well describes the
dynamics of X, which is typical for Markovian and Gaussian systems near equi-
librium, we can use eqn (11) to compute the correlations of X and eqn (13) to
characterize their relaxation time. This is especially interesting since the static
structure factor SstaticXX (k) is sometimes hard to calculate analytically but is fairly
accessible experimentally and numerically,73,88 allowing one to estimate dynam-
ical quantities from static properties. For example, one could explore, in this way,
the effect of steric repulsion, which will be the purpose of a further study.76

However, signicant extensions of sDFT would be required, e.g. to model ions
with different self-diffusion coefficients, with concentration-dependent diffu-
sion,90 and with hydrodynamic interactions.74,75

4.2 Extracting kinetic properties from uctuations in nite volumes

Beyond relaxation dynamics, other ionic-specic kinetic propertiesmay be extracted
from dynamical uctuations in nite volumes. For example, conductivity35 and the
dielectric permittivity and susceptibility73 also derive from integrals of structure
factors, and can be addressed within the same theoretical framework as proposed
here. Since even a quantity as simple as the number density has non-trivial uc-
tuations, with fractional noise signature, it is clear that more complex variables
might exhibit rich behaviour in nite volumes. This resonates with coarse-graining
issues, for example, with lattice methods, where uctuations do not diminish with
coarse-graining size in non-ideal systems, such as with steric repulsion.51,52

4.3 Hyperuniformity in time

Here we have highlighted that the hyperuniform behaviour persists in time,
reaching peculiar scalings, especially at long times. Yet, electrolytes are but
a special case of particles with long-range interactions (decaying as 1/r where r is
the distance between particles), which include also one-component plasmas,
active particles, and many others.59–62,96,97 A recent investigation showed remark-
able results where long-range correlations were observed both in driven electro-
lytes and active particle systems,95,98 for the same underlying mathematical
reason. This raises the question of whether the time-dependent behaviour
uncovered in the present work extends to this broad class of systems and whether
other universal signatures may be unravelled.
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4.4 Fractional noise and noise in conned systems

The omnipresence of the spectrum scaling as 1/f3/2 when observing uctuations
in nite volumes suggests that such fractional noise could be seen in various
contexts. Especially in nanopores, one might wonder if fractional noise is linked
with the pink noise ∼1/f scalings measured on current correlations.67–71,99–101

Beyond apparent discrepancies (in nanopores such correlations are measured
out-of-equilibrium), both contexts involve tracking uctuations in nite sub-
volumes of a larger domain.6,34–36,66,102,103 The ∼1/f pink noise arises in more
varied electrochemical contexts than nanopores, especially near interfaces, for
example in redox monolayers.104 More generally, the advent of microscopy tech-
niques resolving electrochemical uctuations at the single particle level70,105–108

means that there are increasingly more opportunities to compare experiments
and theory at the microscopic level, and more contexts to understand the kinetic
response of uctuations in conned or nite volumes.
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Appendix
Appendix A: simulation details

Brownian dynamics. Brownian dynamics simulations were performed using
the molecular dynamics simulation code LAMMPS 109 for a typical binary
symmetric electrolyte close to aqueous KCl solution at ambient temperature.
Periodic boundary conditions in all directions are used to model a bulk electro-
lyte. The short-range steric repulsion, similar for anions and cations, is modeled
by a Weeks–Chandler–Andersen (WCA) potential described by eqn (A.1), with
parameters 3WCA = 0.1 kcal mol−1 and sWCA = 0.3 nm. Anions and cations,
carrying formal charges ± e, interact through Coulomb interactions eqn (2)
screened by the relative permittivity of water xed at 3w = 78.5. Long-range elec-
trostatic interactions are computed with a PPPM algorithm110 with a cutoff
distance of rcut = 5sWCA = 1.5 nm and a relative force error of 10−5. The diffusion
coefficients, set to D+ = D− = D = 1.5 10−9 m2 s−1, parametrize the random force
and the mobility through uctuation–dissipation D = mkBT, with T = 300 K.
Equations of motion are solved using an adapted overdamped BAOAB inte-
grator111 with a timestep of dt = 20 fs.
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Table 1 Main physical parameters for all simulated systems: number of ion pairs, salt
concentration, Debye screening length and packing fraction

N0 C0 (mM) lD (nm) Packing fraction

32 13 2.7 0.17%
64 26 1.9 0.35%
128 52 1.3 0.71%
256 104 0.95 1.4%
512 207 0.67 2.8%
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VWCAðrÞ ¼
8<
:

VLJðrÞ � VLJ
�
21=6sWCA

�
; r# 21=6sWCA

0; r# 21=6sWCA

where VLJðrÞ ¼ 43WCA

��sWCA

r


12
�
�sWCA

r


6� (A.1)

We run simulations keeping the simulation box size xed at Lsim = 16 nm
while changing the number of particles to modulate salt concentration. We
recapitulate in Table 1 for each simulation system, the resulting salt concentra-
tion C0, Debye length lD and the relative volume packing fraction. Overall, we
work at dilute salt concentrations, meaning that packing fractions are low enough
that we may neglect steric effects.88

Data analysis. For each simulation, we store particle positions every Dt= 100dt
and run simulations for a total of NT= 5× 107 time steps (except for C0= 207 mM
for which NT = 2.5 × 107 time steps). We then track particle locations in various
boxes through a custom-made Python routine. The simulation box is then divided
into Nbin3 cubic observation volumes with size Lobs = Lsim/Nbin where Nbin = [2, 4,
8, 12, 16, 24, 32] are used. We then average correlations over every single recorded

time step as CQðt ¼ nDtÞ ¼ 1
NT � n

XNT�n

p¼0

Qðt0 ¼ pDtÞQðt0 þ t ¼ ðpþ nÞDtÞ. The

uncertainty is estimated as the standard deviation of samples Q(t0= pDt)Q(t0 + t=
(p + n)Dt) divided by the square root of the number of totally uncorrelated
samples, which is (NT − n)/n here.

Power spectrum. For a given random variable X we dene its power spectrum
as

SX ðf Þ ¼ lim
s/N

1

s

����
ðs
0

ei2pftX ðtÞdt
����
2

¼ lim
s/N

ðs
0

ei2pfthX ðtÞX ð0Þidt (A.2)

and is essentially the Fourier transform of the correlation function. SX(f) is
calculated from BD data through fast Fourier transforms of the correlation signal
by padding the signal with its time-reversed signal to limit nite acquisition time
effects on the Fourier transform, similar to Marbach.66

Appendix B: stochastic density functional theory for electrolytes

The N-body problem eqn (1), can be rigorously mapped to stochastic density
equations using the formalism of sDFT.79 For our case of binary symmetric
electrolyte, the exact equations for the anion and cation densities c±(r, t) read:
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8><
>:

vtc�ðr; tÞ þ V$J�ðr; tÞ ¼ 0

J�ðr; tÞ ¼ �D
	
Vc�ðr; tÞ � qc�ðr; tÞVfðr; tÞ

kBT



�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dc�ðr; tÞ

p
h�ðr; tÞ

(B.3)

where the electrostatic potential f satises the Poisson equation Df ¼ �q cþ � c�
3w

and the 3D noise elds h±(r,t) are uncorrelated Gaussian noises, with zero aver-
ages and hh±,i(r,t)h±,j(r

′,t′)i = d±±dijd(r − r′)d(t − t′). Analytical solutions of these
coupled nonlinear SDEs with multiplicative noises are very limited.72 Here, we
briey summarize the derivation of the dynamic structure factor of the elds,
following Mahdisoltani and Golestanian,95 where more general cases are treated.
We switch the formulation to number C = c+ + c− and charge r = q(c+ − c−)
densities, giving8>>><

>>>:
vtC ¼ DV2C þ qV$

	
r
Vfðr; tÞ
kBT



þ
� ffiffiffiffiffiffiffiffiffiffi

4DC
p

hc




vtr ¼ DV2rþ qV$

	
C
Vfðr; tÞ
kBT



þV$

� ffiffiffiffiffiffiffiffiffiffi
4DC

p
hr


 (B.4)

where the noise elds
ffiffiffiffiffiffiffiffiffi
4DC

p
hc;r are obtained from addition and subtraction offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Dc�ðr; tÞ
p

h�, and one can check that the hc,r are uncorrelated Gaussian noise
elds, with similar properties as the h±. We then linearize around the homoge-
nous cation and anion densities (which are equal by electroneutrality), assuming
jc+ − C0j∼jc− − C0j � C0 or equivalently jc = C − 2C0j ∼ jr/qj � C0, and make use
of Poisson’s equation, which yields eqn (4). The solution is conveniently
expressed using spatial and temporal Fourier transforms. This leads to8>>>>>><

>>>>>>:

~cðk;uÞ ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffi
4DC0

p
�iuþDk2

k$~hc

~rðk;uÞ ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffi
4DC0

p

�iuþD

	
k2 þ 1

lD
2


k$~hr

(B.5)

where the Fourier transforms of the random elds obey:

h~hX,i(k,u)~h†Y,j(k′,u′)i = dijdXY(2p)
4d3(k′ + k)d(u′+u) (B.6)

for X = ˛{c, r} and i ˛ {x, y, z}. Finally, computing the quantities h~X(k,u)~X†(k′,u′)i
and using eqn (5) yields the dynamic structure factors, eqn (6).
Appendix C: additional calculations of correlation functions

Volume factor in Fourier space. For our cubic observation volume of side Lobs,

fV ðkÞ ¼ 1

Lobs
3

ðð
dxdx

0
eik$ðx�x0Þ

¼ Lobs
3

	
sinðkxLobsÞ=2
kxLobs=2


2	sin�kyLobs

��
2

kyLobs

�
2


2	
sinðkzLobsÞ=2
kzLobs=2


2

:

(C.7)

Particle number correlations. For particle number correlations, we have,
starting from eqn (7) carrying rst the integral over u
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CNðtÞ ¼ Lobs
3

ðð
dkdu

ð2pÞ4 e
iutfV ðkÞ 4DC0k

2

u2 þ �Dk2
�2

¼ hNi
ð

dk

ð2pÞ3 e
�Dk2tfV ðkÞ:

(C.8)

Observe that e�Dk
2t ¼ e�Dkx

2te�Dky
2te�Dkz

2t and similarly from eqn (C.7) it is clear
that fV ðkÞ can be decomposed over each component of k. Hence, we can split the
integral into 3 separate integrals,

CNðtÞ ¼ hNi
"ð

dkLobs

2p
e�Dk2t

	
sinðkLobs=2Þ
kLobs=2


2
#3
: (C.9)

With the change of variable K = kLobs/2 and recalling that sDiff = Lobs
2/4D. We

nd

CNðtÞ ¼ hNi
"ð

dK

p
e�K

2t=sDiff

	
sinðKÞ
K


2
#3
: (C.10)

Carrying out the integration, we obtain eqn (9).
Charge correlations. For charge correlations, we have, starting from eqn (7)

carrying rst the integral over u

CQðtÞ ¼ Lobs
3

ðð
dkdu

ð2pÞ4e
iutfV ðkÞ 4DC0k

2

u2 þD
�
k2 þ kD2

�2
¼ hNi

ð
dk

ð2pÞ3
k2

k2 þ kD2
e�Dðk2þkD

2ÞtfV ðkÞ:
(C.11)

Unfortunately, in the charge case, for a cubic geometry, it is not possible to
split contributions and obtain an explicit expression.

Approximate expression of the volume factor. To make progress, we derive an
approximate analytic expression for fV ðkÞ. Expressing k in the spherical coordi-
nate system and with the change of variable K = kLobs/2, the charge correlations
simplify to

CQðtÞ ¼ hNi
ð
K2dK

p3

K2

K2 þ KD
2
e�ðK2þKD

2Þt=sDiff fV ðKÞ (C.12)

where KD ¼ Lobs
2lD

and

fV ðKÞ ¼
ðð

sin qdqdf

	
sinðK sin q cos fÞ
K sin q cos f


2	
sinðK sin q sin fÞ
K sin q sin f


2	
sinðK cos qÞ
K cos q


2

:

(C.13)

Notice in the above expressions that K is a non-dimensional wave number.
When K � 1,
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fV ðKÞx8

ðp=2
q¼0

ðp=2
f¼0

sin qdqdfx4p: (C.14)

When K [ 1, the terms sin(K.)2 oscillate very quickly. Integration on f (on q)
actually correspond to K integrations of a nite quantity. This means that f(K)∼ K2/
K6 = 1/K4 when K[ 1. Overall we can therefore approximate the volume factor by

fV ðKÞ ¼ 4p

1þ aK4
(C.15)

where a is a numerical prefactor. Rather than looking at a detailed expansion for K
[ 1 to obtain a, we take a such that we recover the unscreened limit lD [ Lobs (KD
� 1) where eqn (C.12) is analytically solvable, which requires a=(2/p2)2/3. One can
then check through numerical integration that eqn (C.15) is indeed a good approx-
imation of fV(K) (not shown here). The charge correlation function is thus simply

CQðtÞxq2hNi
ð
4K2dK

p2

K2

K2 þ KD
2

1

1þ aK4
e�ðK2þKD

2Þt=sDiff : (C.16)

Limit regimes for static charge correlations. At steady state one can easily
integrate eqn (C.16) and obtain

CQð0Þ ¼ q2hNi

0
BBB@1� 1

1þ 2ð2pÞ1=3 lD

Lobs

þ 2ð2pÞ2=3 lD
2

Lobs
2

1
CCCA (C.17)

for which one recovers easily when lD [ Lobs, CQ(0) = q2hNi and when lD � Lobs,
CQ(0) = q2hNi2(2p)1/3lD/Lobs, given in the main text.

Limit regimes for time dependence of charge correlations.We inspect rst the
case Lobs � lD, which in eqn (C.16) corresponds to KD � 1. At very short times,
where t � sDiff, there is no notable variation, and since Lobs � lD, it is clear that

CQ(t � sDiff) x CQ(0) = q2N = q2(2C0)Lobs
3. (C.18)

When t T sDiff, but still t ( sDebye, we may still assume in eqn (C.16) that the
dominant K values are for K [ KD and since CQ(t) does not depend on lD yet, we
can carry out the integration, and we obtain a similar behaviour as for the particle
number
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�
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such that if we expand at early times, we obtain

CQ

�
sDebye $ t$ sDiff

�
q2hNi x

	
t

psDiff



: (C.20)
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Finally, when t [ sDebye, then only small values of K � KD will contribute to
the integral and we can approximate it as

CQðtÞxq2hNi
ð
4K2dK

p2

K2

KD
2
e�ðK2þKD

2Þt=sDiff (C.21)

which yields

CQ

�
t[sDebye

�
xq2

 
2C0LobslD

2 6

p3=2

	
t

sDiff


�5=2
e�t=sDebye

!
: (C.22)

We now study the time dependence when L[ lD, so in eqn (C.16), this means
KD[ 1. At very short times, where t� sDebye= lD

2/D there is no notable variation
in time yet and

CQ(t � sDebye) x CQ(0) = (16p)1/3q2(2C0)Lobs
2lD. (C.23)

When t T sDebye yet t ( sDiff, then we can approximate eqn (C.16) assuming
e−K2t/sDiff x 1 when K #

ffiffiffiffiffiffiffiffiffiffiffiffiffi
sDiff=t

p
and 0 otherwise. This leads (assuming rst KD [

K in eqn (C.16)) to

CQðtÞxq2
�
N
� ð ffiffiffiffiffiffiffiffiffiffi

sDiff=t
p
0

4K2dK

p2

K2

K2
D

1

1þ aK4
(C.24)

and expanding for sufficiently long times compared to sDebye,

CQ

�
sDiff $ t$ sDebye

�
xð16pÞ1=3q2ð2C0ÞLobs

2lD
2

p

ffiffiffiffiffiffiffiffiffiffiffi
sdebye
t

r
e�t=sDebye : (C.25)

Finally, when t [ sDiff, then only small values of K will contribute to the
integral, which we can approximate (similarly to the case Lobs � lD) as in eqn
(C.21) which ultimately yields eqn (C.22).

Charge correlation timescale. The total correlation timescale can be dened as

T ¼
ðN
0

dt
CQðtÞ
CQð0Þ ¼

ðN
0

dt
hQðtÞQð0Þi
hQð0ÞQð0Þi: (C.26)

It can be easily calculated from eqn (C.16) as

T ¼ sDiff

Ð
K2dK

1

K2

	
K2

K2 þ KD
2


2
1

1þ aK4

Ð
K2dK

K2

K2 þ KD
2

1

1þ aK4

¼ sDiff fT ðLobs=2lDÞ (C.27)

where fTðxÞ ¼
ffiffiffi
a

p ð ffiffiffi
2

p � a1=4xþ a3=4x3Þ
ð ffiffiffi

2
p � 2a1=4xÞð1þ ax4Þ and we recall a=(2/p2)2/3. Note again that

since K is non-dimensional, eqn (C.27) is indeed homogeneous. When Lobs [ lD

then

T ¼ sDiff

1

2ðLobs=2lDÞ2
¼ 1

2
sDebye: (C.28)
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Otherwise when L � lD

T = sDiff(2/p
2)1/3. (C.29)

Power spectrum. From the expression of the power spectrum eqn (A.2) and eqn
(C.16) we obtain the power spectrum for the charge in the observation volume as

SQðf ¼ u=2pÞ ¼ sDiffhNi
ð
K2dK

p3

K2�
usDiff

�2 þ �K2 þ KD
2
�fV ðKÞ (C.30)

and note that SNðf Þ ¼ lim
KD/0

SQðf Þ. In general, note that

SX ðf ¼ 0Þ ¼ TX

CX ð0Þ (C.31)

which means the time scale for relaxation and the hyperuniform behaviour are all
contained in the zero frequency limit of the power spectrum. We use eqn (C.30)
(with the exact fV(K)) to plot lines in Fig. 2c and 6c. With the approximate
expression for fV(K), we can rst obtain an expression for the particle number
spectrum

SNðf ¼ u=2pÞxhNi sDiffp

2
ffiffiffi
2

p
a1=4

1� �a1=2usDiff

�1=2
1� �a1=2usDiff

�2 : (C.32)

Clearly for small frequencies, the power spectrum plateaus as

SNðf � 1=sDiffÞ ¼ T
CNð0Þx

sDiffp

2
ffiffiffi
2

p
a1=4

. The power spectrum decays as 1/f3/2 for large

frequencies. We do not report the approximate expression SQ(f) since it is quite
lengthy, but similarly, as SN(f), it can be expanded for small and large frequencies
to yield a plateau and a 1/f 3/2 decay, respectively.
Appendix D: expressions for a spherical observation volume

For a spherical observation volume of radius Robs,

fV ðkÞ ¼ 12pRobs
3

ðkRobsÞ4
	
sinðkRobsÞ
kRobs

� cosðkRobsÞ

2

: (D.33)

Then writing K = kRobs and KD = Robs/lD and sDiff = D/Robs
2 we simply have the

charge correlation function

CQðtÞ ¼ q2hNi 6
p

ð
K2

K2 þ KD
2
e�ðK2þKD

2Þt=sDiff
1

K4

	
sinðKÞ
K

� cosðKÞdK


: (D.34)

While the integration of eqn (D.34) can be done analytically, it yields a rather
lengthy result which we do not report here.

At t = 0, we have

CQð0Þ ¼ 3q2hNi lDðlD þ RobsÞ
Robs

2

	
cosh

	
Robs

lD



� lD

Robs

sinh

	
Robs

lD




e�Robs=lD (D.35)
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which is exactly the expression obtained in eqn (17) of Kim and Fisher.17 When
Robs [ lD, the static charge correlations are indeed hyperuniform

CQð0Þ ¼ 3

2
q2hNi lD

Robs

¼ 3q2C0Robs
2lD: (D.36)

In the opposite limit where lD [ Robs we have

CQ(0) = q2hNi (D.37)

as expected from standard statistical physics frameworks.
Now when Robs [ lD and when we observe the dynamics at early times, here

meaning t $ sDebye = lD
2/D but t # sDiff = Robs

2/D, we have

CQ

�
sDiff $ t$ sDebye

�
xq2

3

p
hNi lD

Robs

e�t=sDebye

ffiffiffiffiffiffiffiffiffiffiffi
sDebye

t

r
(D.38)

so that the dynamics appear to be governed by the Debye time. Notice that the
scaling law for the dynamics is very similar to that in the cubic case, eqn (C.25).
Finally, at long times, regardless of the separation of length scales

CQ

�
t[sDebye; sDiff

�
xq2

32C0lD
2Robs

p
e�t=sDebye

�sDiff

t


5
e�t=sDebye (D.39)

which shows again that timescales are convoluted at long times. The expression
we obtain is very similar to eqn (C.22), except with a 1/t5 instead of a 1/t5/2 scaling
in time. Noteworthy, at long times, the correlations appear to scale with Robs, so
with the perimeter of the observation volume, which we also found in the box
geometry.

Note, that also in this spherical geometry, we can calculate the Fourier spec-
trum – which we do not report here as it is very similar to the steps above – and we
obtain a plateau and a 1/f3/2 decay at long times.
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