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Osmosis, from molecular insights to large-scale
applications

Sophie Marbach † and Lydéric Bocquet *

Osmosis is a universal phenomenon occurring in a broad variety of processes and fields. It is the

archetype of entropic forces, both trivial in its fundamental expression – the van ’t Hoff perfect gas

law – and highly subtle in its physical roots. While osmosis is intimately linked with transport across

membranes, it also manifests itself as an interfacial transport phenomenon: the so-called diffusio-

osmosis and -phoresis, whose consequences are presently actively explored for example for the

manipulation of colloidal suspensions or the development of active colloidal swimmers. Here we give a

global and unifying view of the phenomenon of osmosis and its consequences with a multi-disciplinary

perspective. Pushing the fundamental understanding of osmosis allows one to propose new

perspectives for different fields and we highlight a number of examples along these lines, for example

introducing the concepts of osmotic diodes, active separation and far from equilibrium osmosis, raising

in turn fundamental questions in the thermodynamics of separation. The applications of osmosis are

also obviously considerable and span very diverse fields. Here we discuss a selection of phenomena and

applications where osmosis shows great promises: osmotic phenomena in membrane science (with

recent developments in separation, desalination, reverse osmosis for water purification thanks in

particular to the emergence of new nanomaterials); applications in biology and health (in particular

discussing the kidney filtration process); osmosis and energy harvesting (in particular, osmotic power

and blue energy as well as capacitive mixing); applications in detergency and cleaning, as well as for oil

recovery in porous media.

1 Introduction

From the etymological point of view, osmosis denotes a ‘‘push’’
and indeed osmosis is usually associated with the notion of
force and pressure. Osmosis is a very old topic, it was first
observed centuries ago with reports by Jean-Antoine Nollet in
the 18th century. It was rationalized more than one century
later by van ’t Hoff, who showed that the osmotic pressure took
the form of a perfect gas equation of state. In practice, an
osmotic pressure is typically expressed across a semi-permeable
membrane, e.g. a membrane that allows only the solvent to pass
while retaining solutes. If two solutions of a liquid containing
different solute concentrations are put into contact through
such a semi-permeable membrane, the fluid will undergo a
driving force pushing it towards the reservoir with the highest
solute concentration, see Fig. 1. Reversely, in order to prevent
the fluid from passing through the membrane, a pressure has to be applied to the fluid to counteract the flow: the applied

pressure is then equal to the osmotic pressure.
Osmosis is therefore extremely simple in its expression. Yet

it is one of the most subtle physics phenomenon in its roots – it
resulted in many debates over years.1,2 Osmosis also implies
subtle phenomena, in particular as a prototypical illustration
for the explicit conversion of entropy of mixing into mechanical

Fig. 1 Key manifestation of osmosis. A semi-permeable membrane allows
transport of water upon a solute concentration difference (in red). The flow of
water is directed from the fresh water reservoir to the concentrated reservoir.
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work. In spite of centuries of exploration, osmosis as a field
remains very lively, with a number of recent breakthroughs
both in its concepts and applications as we shall explore in this
review. A simple reason for the importance of osmosis is that it
is a very powerful phenomenon: giving just one illustrative
number, it is amazing to realize that a concentration difference of
B1.2 molar, which corresponds roughly to the difference between
sea and fresh water (and can be easily achieved in anyone’s
kitchen), yields an osmotic pressure of B30 atmospheres. This
is the hydrostatic pressure felt under a 300 m water column!
Osmosis has potentially a destructive power, in particular in soft
tissues and membranes, with possible fatal consequences.3 This
explains actually why it is also an efficient asset for food preserva-
tion (such as fish and meat curing with dry salt).

Osmosis is accordingly also a key and universal phenomenon
occurring in many processes, ranging from biological transport in
plants, trees and cells, to water filtration, reverse and forward osmosis,
energy harvesting and osmotic power, capacitive mixing, oil
recovery, detergency and cleaning, active matter, to quote just a few.

The literature on osmosis and its consequences is accord-
ingly absolutely huge,‡ and it may seem hopeless to cover in a
single review all aspects of the topic with an exhaustive discus-
sion of all possible applications. Also, such a comprehensive
list would probably be useless for readers who want to catch up
with the topics related to osmosis. In writing this review, we
thus decided to rather present a tutorial and unified perspec-
tive of osmosis, obviously with personal views, avoiding exhaus-
tiveness to highlight a number of significant questions
discussed in the recent literature. The review will therefore
explore the fundamental foundations of osmosis, emphasizing

in particular the – sometimes subtle – mechanical balance at
play; then report on more recent concepts and applications
related to osmosis which – in our opinion – prove promising for
future perspectives. We will accordingly put in context phenom-
ena like diffusio-osmosis and -phoresis, as well as ‘‘active’’
(non-equilibrium) counterparts of osmosis, which were realized
lately to play a growing role in numerous applications in
filtration and energy harvesting.

The review is organized as follows. We start with some basic
reminder of the fundamentals of osmosis in terms of equili-
brium and non-equilibrium thermodynamics of the underlying
process. We further highlight simplistic views clarifying the
mechanical aspects of osmosis. We then discuss membrane-
less osmosis and the so-called diffusio-osmotic flows. We then
show how such phenomena may be harnessed to go beyond the
simple views of van ’t Hoff. We then explore the transport of
particles under solute gradients, diffusio-phoresis, and discuss
how this phenomenon can be harnessed to manipulate colloi-
dal assemblies. And we finally illustrate a number of applica-
tions for the introduced concepts, from desalination, water
treatment, the functioning of the kidney, blue energy harvest-
ing, etc. We conclude with some final, brief, perspectives.

2 Osmosis: the van ’t Hoff legacy
2.1 A quick history of osmosis

We start this review with a short and non-exhaustive journey
through time in order to highlight how a complete under-
standing of osmosis emerged over time. We refer e.g. to ref. 4
for a more detailed historical review. The first occurrence of the
term ‘‘osmosis’’ and clear observation of its effects - beyond the
seminal work of Nollet – is reported at least as early as in the
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works of Henri Dutrochet in the 1820s.5,6 He observed swelling
events or emptying of pockets driven by the presence of various
dissolved components in water (different sugars in plants,
sperm in slugs. . .). In reference to the greek term ‘‘osmose’’
(meaning ‘‘impulsion’’ or ‘‘push’’) he introduced the vocabulary
‘‘endosmose’’ and ‘‘exosmose’’. Interestingly, Dutrochet served as
a pioneer in linking these different topics by claiming that the
same physical force could be used to describe all these events,5

which is indeed a unique and fascinating feature of osmosis. Yet,
the mechanisms driving osmotic flow were still unclear, and
entangled (or believed to be entangled) with capillary and
electrical effects. In 1854 T. Graham introduced the word
‘‘osmosis’’ building on the work of Dutrochet.7

Interestingly, the distinction between osmosis and pure
diffusion – without a membrane, see Fig. 2 – is not clear from
the beginning. The confusion will grow stronger with the work of
Adolf Fick in 1855,8 where he claims that diffusive motion (Fickian
diffusion) is the driver for osmotic flow (the water concentration
imbalance between the two compartments drives the water flow).
The question of finding whether osmotic flow is diffusion-driven or
not will be an ongoing debate for a century. That diffusion alone
cannot account for osmosis is not widely appreciated. In 1957, the
debate is definitely closed by an experimental visualization of water
flow, using radioactively labeled water molecules9 and verified in
ref. 10. The flows measured were significantly higher than that
expected by pure diffusion.

In 1877, Wilhelm Pfeffer made the first measurements of
osmotic pressure,11 see Fig. 3. At equilibrium, he measured a
rise in the concentrated solution, corresponding to a hydraulic
pressure drop that is equal to the osmotic pressure. He measured
a linear relation between the osmotic pressure and the concen-
tration difference. But also, Pfeffer measured that for each degree
rise in temperature, the pressure would go up by 1/270.12 This fact
was reported to Jacobus Henricus van ’t Hoff by the botanist Hugo

de Vries and van ’t Hoff immediately recognized that 270 was an
approximation of 273 K. Intrigued by this result, he attempted in
1887 to rationalize this linear dependence13 and suggested to
interpret that the osmotic pressure DP was exerted by the solute
particles and equal to the partial pressure that they would have in
gas phase (therefore the term ‘‘osmotic pressure’’):

[. . .] it occurred to me that with the semipermeable barrier all
the reversible transformations that so materially ease the application of
thermodynamics to gases, become equally available for solutions. . .

That was a ray of light; and led at once to the inescapable conclusion
that the osmotic pressure of dilute solutions must vary with temperature
entirely as does gas pressure [. . .].12

then writing

DP = kBTDcs (1)

with kB the Boltzmann constant, T temperature and Dcs the
solute imbalance between reservoirs.

Eqn (1) is today referred to as the van ’t Hoff law, and gives
in practice good agreement for the osmotic pressure measured
between two solutions separated by a membrane permeable
only to the solvent. For a solute imbalance of DCs = 1.2 mol L�1

(corresponding to the ionic strength difference between fresh
and sea water, which is twice – two ions for salt – the typical
concentration 0.6 mol L�1), we find an osmotic pressure of
DP = kBTDCsNA C 30 bar.

At the time, the interpretation of van ’t Hoff gave rise to a
number of debates.1,2 In the following decades a great number of
theories were invented to describe the osmotic phenomenon and
a detailed review of these theories can be found in ref. 14. Among
all these theories, two of them caught a lot of attention. One of
them was the proof of van ’t Hoff’s law using the kinetic theory of
gas to describe the two solutions15 (which was later improved for
multicomponent systems16). The other one is acknowledged today
as the common description of osmosis, and makes use of the
concept of chemical potentials first introduced by Josiah Willard
Gibbs17 (actually introduced as a physical descriptor required to
understand osmosis), that we recall in the next section.

2.2 Thermodynamic equilibrium

We start with the thermodynamic derivation of the osmotic
pressure as proposed by Gibbs. We follow here the clear-cut
presentation proposed in the textbook by Callen,18 which we recall

Fig. 2 Osmosis versus diffusion. (a) Situation where motion of the red
solute particles is governed by diffusion alone (b) osmosis situation, where
motion of the blue solvent particles is driven by osmosis; the solute
particles being ‘‘repelled’’ by the membrane, the membrane exerts an
effective force on the liquid (solute + solvent) that drives solvent flow
towards the highly concentrated reservoir.

Fig. 3 First measurements of osmotic pressure. (a) Schematic of a Pfeffer
cell, the device used by W. Pfeffer to perform the first measurements of
osmotic pressure; (b) osmotic pressure as a function of solute concen-
tration at two temperatures, with experimental data points from W.
Pfeffer11 verifying a linear relation (the lines are a guide for the eye).
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here for the purpose of settling properly the foundations. In
addition to Callen it is also worth reading the rigorous thermo-
dynamic treatment by Guggenheim.19 We consider a composite
system made of two simple reservoirs (left and right) separated by
a rigid wall permeable to component w (usually the solvent) and
totally impermeable to all other components (labelled s1, s2 and
so on). The whole system is in contact with a thermal bath at
temperature T. The solvent is in equilibrium over the whole
system, i.e. over the two reservoirs, while solutes cannot equili-
brate between the reservoirs. Due to the imbalance of solute
fraction between both reservoirs, the solvent cannot keep a
homogeneous pressure across the two reservoirs while ensuring
the equality of chemical potential at equilibrium. An (osmotic)
pressure drop builds up, which the membrane withstands.

Assuming that the solute concentration is dilute, the Gibbs
free energy of a binary system of solvent and dilute solute can
be written as

G T ; p;Nw;Ns1

� �
¼ Nwm0wðp;TÞ þNsm0s ðp;TÞ

þNwkBT ln
Nw

Nw þNs
þNskBT ln

Ns

Nw þNs

(2)

where m0
w(p,T) and m0

s(p,T) are the chemical potentials of the
pure solvent and solute and the last two terms correspond
to the entropy of mixing terms. In the dilute regime where
Ns { Nw the Gibbs free energy simplifies to

G T ; p;Nw;Nsð ÞÞ ¼ Nwm0wðp;TÞ þNsm0s ðp;TÞ

� kBTNs þNskBT ln
Ns

Nw

(3)

and the chemical potential of the solvent may be obtained as
mw = qNw

G

mw(T,p,X) C m0
w(p,T) � kBTX. (4)

with X C Ns/Nw the solute molar fraction. The chemical
potential balance, m(l)

w = m(r)
w , thus writes

mw T ; pðlÞ; 0
� �

� kBT
N
ðlÞ
s

N
ðlÞ
w

¼ mw T ; pðrÞ; 0
� �

� kBT
N
ðrÞ
s

N
ðrÞ
w

: (5)

Noting then that for small pressure drops, mw(T,p(r),0) C
mw(T,p(l),0) + (p(r) � p(l))vw, with vw = qpmw(T,p,0) the molecular
volume, one deduces finally

DP ¼ pðrÞ � pðlÞ ¼ kBT
N
ðrÞ
s

VðrÞ
�N

ðlÞ
s

V ðlÞ

" #
(6)

Introducing the concentration as cs = Ns/V, one thus recovers
the result of van ’t Hoff

DP = kBTDcs. (7)

In the case of several dilute solutes, this generalizes simply to

DP ¼ kBT
N
ðrÞ
s1 þN

ðrÞ
s2 þ :::

V ðrÞ
�N

ðlÞ
s1 þN

ðlÞ
s2 þ :::

V ðlÞ

" #
: (8)

The derivation above is limited to dilute solutes. For arbitrary
molar fractions X of solute/solvent mixtures, the osmotic pressure
is given in terms of the general expression for the pressure,
namely20

PðXÞ ¼ X
@f

@X
� f ½X� þ f ½X ¼ 0�; (9)

with f (X) = F/V the Helmholtz free energy density calculated for a
solute molar fraction X. Deviations from ideality are for example
measured for polymers, where the range of validity of the van ’t
Hoff law decreases with increasing molecular weight.20 Deviations
are also expected for highly concentrated brines or solvent
mixtures, e.g. in the context of solvophoresis, see below ref. 21.

An interesting, and quite counter-intuitive remark is that –
provided it is semi-permeable – the membrane characteristics
do not appear in this thermodynamic expression for the
osmotic pressure. Another puzzling remark is that the osmotic
pressure is a colligative property, i.e. it does not depend on the
nature of the solute (nor that of the membrane), but only on
the concentration of the solute. This is relevant when the
membrane is completely impermeable to the solute, but when
the membrane is only partially impermeable, or when there are
different solutes with different permeation properties, there
may be both a solvent and a solute flux driven by the solute
concentration imbalance (in opposite directions).22–26 The
osmotic pressure is then usually assumed to be reduced by a
so-called (dimensionless) reflection factor, s, which depends
on the specific properties of solvent–membrane interactions
and transport. This requires to go beyond the thermodynamic
equilibrium and consider the detailed mass and solute trans-
port across the membrane, as we now explore.

2.3 Osmotic fluxes and thermodynamic forces

Following the work of Staverman,27 Kedem and Katchalsky derived
a relation between solute and solvent flows through a porous
membrane and the corresponding thermodynamic forces,28 based
on Onsager’s framework of irreversible processes.29,30

As in the previous section, we consider a composite system
made of two simple reservoirs (left and right), containing a
solvent w and a solute s. The reservoirs are separated by a rigid
wall, which is now permeable to all components, but with a
differential permeability between the solute and the solvent.
Obviously, the objective of the membrane is somehow to reject
the solute but the rejection is incomplete here. The whole
system is put in contact with a thermal bath at temperature T.

The entropy production (per unit membrane area A) is
accordingly written as:

F ¼ T

A

dS

dt
¼ � mðrÞw � mðlÞw

� �dNðrÞw
dt
� mðrÞs � mðlÞs
� �dNðrÞs

dt
(10)

with
dN
ðrÞ
i

dt
the flux of molecules of component i per unit area.

The dissipation function of eqn (10) is a product of fluxes
dN
ðrÞ
i

dt
and the corresponding thermodynamic forces, here the differ-
ences in chemical potentials.
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Now, restricting ourselves to ideal solutions for simplicity,
one may write the chemical potential difference as m(r)

i � m(l)
i =

viDp + kBTD ln Xi where Xi is the molar fraction of component i
and vi = (qmi/qp) the molar volume of i. Accordingly,

mðrÞs � mðlÞs ¼ vsDpþ kBT
Dcs
cs

for the solute and mðrÞw � mðlÞw ¼

vwDp� kBT
Dcs
cw

for the solvent (where we used cs { cw).

Eqn (10) then rewrites:

F ¼ � vw
dN
ðrÞ
w

dt
þ vs

dN
ðrÞ
s

dt

 !
Dp� 1

cs

dN
ðrÞ
s

dt
� 1

cw

dN
ðrÞ
w

dt

 !
kBTDcs

(11)

From the dissipation function in eqn (11), we may thus
identify a new set of forces and fluxes: new forces are �Dp and
�kBTDcs, respectively the hydrostatic pressure and solute
concentration imbalance; new flows are (a) the total volume
flow through the membrane (sum of all flows):

Q ¼ vw
dN
ðrÞ
w

dt
þ vs

dN
ðrÞ
s

dt
(12)

and (b) the excess solute flow (as compared to the solute flow
carried by the solvent) or the exchange flow:

Je ¼
1

cs

dN
ðrÞ
s

dt
� 1

cw

dN
ðrÞ
w

dt
(13)

Under the assumption that the concentration of solute is
small cs { cw, one may thus rewrite Je C Js/cs� Q where Js is the
solute flow.

The framework of irreversible processes assumes a linear
relation between fluxes and forces,30 hereby taking the form

Q

Js � csQ

 !
¼ L�

�Dp

�kBTDlogcs

 !
: (14)

where L is the transport matrix. Importantly, as we discuss below
and in Section 3.2.2, this matrix is symmetric according to Onsager’s
principle – due to microscopic time reversibility – and definite
positive – due to the second principle of thermodynamics.

The question then amounts to characterizing the transport
coefficients of this matrix. By identifying limiting regimes,
Kedem and Kachalsky rewrote these transport equations in a
more explicit form as28,31–34

Q = �Lhyd(Dp � skBTDcs), (15)

Js = �LDosDcs + cs(1 � s)Q, (16)

where Lhyd = khydA/(ZL) is the solvent permeance through the
membrane with khyd the permeability (with units of a length
squared), A the membrane area, Z the fluid viscosity, and L the
membrane thickness; LD = ADs/L is the solute permeability
with Ds the diffusion coefficient of the solute. Eqn (15) is often
referred to as the Starling equation in the physiology
literature,35 see e.g. ref. 36 and 37. The osmotic pressure
generated by the large scale molecules involved in the body
(complex proteins such as albumin and more) is referred to as the
oncotic pressure. These equations introduce two dimensionless

(numerical) factors: s is the so-called reflection or selectivity
coefficient and os is a solute ‘‘mobility’’ across the membrane –
both of which we discuss in details below.

The Onsager symmetry relations for eqn (14) can be verified
by exploring two limiting cases: (1) the situation where Dp = 0
yields osmotic flow only as Q = sLhydcsDm (using Dm = kBTDcs/cs

in the dilute case); (2) and the situation where Dm = 0 yields
Js � csQ = sLhydcsDp. One obtains therefore [Q/Dm]Dp=0 =
[( Js � csQ)/Dp]Dm=0 and the symmetry of the transport matrix
is indeed verified.

The reflection coefficient and the solute mobility. The
Kedem–Katchalsky equations introduce the reflection coefficient
s mentioned previously and first described by Staverman.27 This
coefficient a priori depends on the relative interactions of the
membrane with the solute and solvent.22,23,38 The Kedem–Katch-
alsky framework also introduces the permeability of the solute
through the membrane via the combination LDos. A fully semi-
permeable membrane corresponds to the case where s = 1 and os =
0: the solute flux vanishes Js = 0 and the pressure driving the fluid
identifies with the van ’t Hoff result DP = kBTDcs. Reversely, a
‘‘transparent’’ membrane which is fully permeable to both solute
and solvent correspond to s = 0 and os = 1: no osmotic pressure is
expressed and the solute flux reduces to Fick’s law.

In the intermediate case, the membrane is partially perme-
able to the solute and we expect 0 o s o 1, see Fig. 4. As an
example, in a pure Nafion membrane about 18 mm thick, the
reflection coefficient between water and KCl salt was measured
as s = 0.82 (at concentration 0.25 mol L�1).39

Interestingly, cases with negative reflection coefficient,
so 0, were reported. This situation is often termed anomalous
osmosis40,41 and it corresponds to situations where the solute is
more permeable than the solvent. We will discuss in Section 4
various examples where such a situation with reversed osmosis
occurs.

The specificity of the membrane and its interaction with the
solute molecules actually come into play into this reflection
coefficient s. A number of models have tried to rationalize the
dependence of s on the chemical and physical properties of the
components. The first models took into account steric effects
(similar to Fig. 4), where in fact the volume accessible to the
solute inside the pore would differ (because of its typically
larger size) than that accessible to the solvent.42–44 The next

Fig. 4 Examples of reflection coefficient based on steric exclusion. In (a)
the blue solvent only may traverse the pores; while in (b) the red solute
particles may also traverse; their permeability through the pores is how-
ever small since the accessible volume in the pore for the red solute
particles is smaller than that for the blue solvent. (c) The membrane is now
fully permeable to all species, and therefore diffusion dominates and
solute particles move towards the low concentration side.
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generation of models sought to include as well hydrodynamic
interactions, investigating how friction induced by the proximity
of the solute to the pore walls would reduce permeability.45,46

Anderson also studied interactions with the pore walls and
adsorption of the solute in the pore.38 Similarly, the ‘‘mobility’’
coefficient os entering the transport equations will depend both
on the solute–membrane interactions and transport parameters.
A first, naive, estimate is to identify this coefficient with the
partition coefficient of the solute between the membrane and
the reservoirs at equilibrium, Ks = cm

s /cbulk
s , so that os = Ks.

31

But this estimate does not account for the complex transport
processes occurring within the membrane. Interestingly, the
non-dimensional coefficients os and s are expected to be linearly
related,31 as 1 � s p os, a result that we will recover below in a
specific case.

Altogether, a complete determination of the reflection and
mobility coefficients requires to implement a microscopic
description of the membrane–fluid interactions. We will
explore below and in Section 3 various situations highlighting
how playing with interactions may lead to advanced osmotic
transport behavior.

2.4 Mechanical views of osmosis: a tutorial perspective

Beyond the general formalism introduced above, it is interesting
to get further fundamental insights into the microscopic
mechanisms which underlie osmosis. In particular it is of
interest to get some intuition on the mechanical force balance
associated with the osmotic pressure. To do so, we will reduce
the microscopic ingredients of osmosis to their minimal func-
tion and this description has merely a tutorial purpose. Still it is
very enlightening in order to understand how the connection
between ‘‘microscopic’’ parameters and thermodynamic forces
builds up. Such mechanistic views of osmosis also allow to
envision advanced osmotic phenomena, beyond the van ’t Hoff
perspective. Alternative approaches with similar illustrative
objectives were proposed for one-dimensional single file channels,
see ref. 47 and 48.

We pointed out above that the van ’t Hoff law for the osmotic
pressure does not involve the membrane properties per se,
provided that it is semi-permeable. So it is tempting to replace
the membrane by a crude equivalent, namely an energy barrier
acting on the solute only, say U(x) (assuming for simplicity a
unidimensional geometry) – see Fig. 5. This approach, which
captures the minimal ingredients at play in osmosis, was first
introduced by Manning49 in the low concentration regime, and
generalized more recently to explore the osmotic transport
across perm-selective charged nanochannels50 or in non-linear
regimes at high solute concentrations.51 One may note that such
a potential barrier can also be physically achieved; for example, it
may be generated from a nonuniform electric field acting on a
polar solute in a nonpolar solvent,52 or it can represent the
nonequivalent interactions of solute and of solvent particles with
a permeable membrane, e.g., charge interactions.50,53

Let us first consider the ideal case where the barrier’s
maximum is high, i.e. Umax c kBT, so that the solute cannot cross
the barrier: this is the perfectly semi-permeable case. In both

reservoirs the solute is at equilibrium and the solute profile follows
accordingly the Boltzmann relation

cðrÞ=ðlÞs ðxÞ ¼ cðrÞ=ðlÞs � e
�UðxÞ
kBT (17)

Now, a key remark is that the force on a fluid element of
volume dt (consisting of the solvent and solute mixture)
will write

df (x) = c(r)/(l)
s (x) � (�qxU(x))dt. (18)

with dt = Adx; A is the membrane area. The total force per
unit area acting on the fluid is accordingly integrated over x

FT

A
¼
ð1
0

dx cðrÞs e
�UðxÞ
kBT � �@xUðxÞð Þ

þ
ð0
�1

dx cðlÞs e
�UðxÞ
kBT � �@xUðxÞð Þ

(19)

(where we arbitrarily put x = 0 at the position of the maximum
of the energy barrier), leading immediately to

FT

A
¼ kBT � ½cðrÞs � cðlÞs � � DP (20)

where we neglected terms behaving as exp[�Umax/kBT]. Alto-
gether this simple approach allows one to retrieve the van ’t
Hoff law. It highlights the mechanical origin of osmosis: as is
transparent from the previous derivation, the osmotic pressure

Fig. 5 The physical force driving osmosis is interaction of the solute with
the membrane. (a) The membrane exerts a repulsive force (red arrows) on
the solute particles (red) that creates a pressure gradient (or a void on the
immediate left hand side of the membrane) that drives the flow (blue
arrows of blue solvent particles). (b) Mechanical view of osmosis: the
partially permeable membrane may be viewed as an energy barrier for the
solute molecules (in red) that they have to overcome in order to traverse
the membrane.
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results from the fact that the reservoir containing more solute
particle will generate a higher repelling force on the fluid than
from the other reservoir: accordingly a fluid flow will be
generated from the low to the high concentrations, hence
diluting the more concentrated reservoir.

While the above approach is instrinsically at equilibrium,
it can be easily generalized to a non-equilibrium situation
by releasing the assumption of an (infinitely) high energy
barrier: in this case the solute can cross the ‘‘membrane’’
between the two reservoirs at a finite rate, see Fig. 5,
generating a solute flux. We further assume that the membrane
is fully permeable to the solvent (no energy barrier acting on it),
with a permeance Lhyd relating the fluid flux Q to the pressure
drop Dp in the absence of a concentration difference: Q =
Lhyd(�Dp).

The stationary dynamics of the system is described by the
coupled set of equations for the solute diffusive dynamics –
Smoluchowski equation – and fluid transport – Navier–Stokes
equation. In the 1D geometry described above, the stationary
solute concentration cs(x) obeys a Smoluchowski equation:

0 = qtcs = �qxjs = �qx(�Dsqxcs + lscs(�qxU) + vxcs), (21)

where js = Js/A is the solute flux per unit surface, Ds is the solute
diffusion coefficient, ls = Ds/kBT the mobility and vx the local
fluid velocity. We will further assume a low Péclet number,
Pe = vxL/Ds { 1, such that the convective term of eqn (21) is
negligible. This is valid for low permeability (nanoporous)
membranes. The full derivation including the convective
term was considered in ref. 49. Since the solute flux across
the membrane Js is constant in time and spatially uniform,
eqn (21) is explicitly solved with respect to the concentration as:

csðxÞ ¼ cðrÞs � Dcse�bUðxÞ
Ð L=2
x dx0 exp þbUðx0Þ½ �Ð L=2
�L=2dx

0 exp þbUðx0Þ½ �
; (22)

where b = 1/kBT. The solute concentration difference between
the two volumes is Dcs = c(r)

s � c(l)
s . For simplicity we assumed

that the barrier has an extension L.
Now turning to the momentum conservation equation for

the fluid (solvent + solute), the flow field v of the fluid obeys a
Stokes equation (neglecting inertial terms)

0 = �=p + Z=2v + fext, (23)

where p is the fluid pressure and fext represents the total volume
forces acting on the system, e.g. the forces acting on the solvent
and on the solute, here

fext = cs(�=U). (24)

The driving force inducing the solvent flow along the x axis
is accordingly written in terms of an apparent pressure drop,
�qxP = �qxp + cs(x)(�qxU). The membrane, via its potential U, will
therefore create an average force on the fluid, which writes per unit
surface

�DP ¼ �Dpþ
ðL=2
�L=2

dxcs �@xUð Þ � �Dpþ sDP; (25)

where D means the difference of a quantity between the two
sides. The second term of eqn (25) can be interpreted as the
osmotic contribution. Using the expression for the concentration
profile given in eqn (22), one recovers the classical van ’t Hoff law
of the osmotic pressure, DP = kBTDcs, and furthermore obtains
an expression for the reflection coefficient s as

s ¼ 1� LÐ L=2
�L=2dx

0 exp þbUðx0Þ½ �
: (26)

The above result correctly recovers the case of a completely
semi-permeable membrane (no solute flux across the membrane),
i.e., bU c 1 and s - 1, yielding �DP = �D[p � P]. In the
intermediate cases, although the membrane is permeable, a flow
arises due to the solute concentration gradient even in the absence
of an imposed pressure gradient. When the potential is repulsive
and small UB kBT, then 0 o so 1; the flow is in the direction of
increasing concentration.

Integrating eqn (23) over the membrane area (A) and
thickness (L) allows the total flux Q to be expressed as

Q = �Lhyd(Dp � skBTDcs). (27)

Here the permeance Lhyd can be expressed in terms of the

permeability, khyd, as Lhyd ¼
A

L

khyd
Z

. The permeability khyd is

defined formally in terms of the flow as khyd
�1 = h�r2vi/hvi,

where h�i ¼V�1Ð ÐdxdAð�Þ denotes an average over the pore
volume, here V = AL. These parameters, khyd and Lhyd, take
into account the detailed geometry of the pores in the
membrane (pore cross section, length, etc.). Overall eqn (27)
agrees with the Kedem–Kachalsky result in eqn (15). While this
approach is derived here in the dilute regime for the solute, it
can be generalized to arbitrary concentrations, see ref. 51.

As a last remark, it is interesting to note that the mechanistic
approach highlights an underlying fundamental symmetry in the
transport phenomenon. Indeed eqn (25) introduces the osmotic

pressure as the driving force on the fluid:
Ð L=2
�L=2dxcs �@xUð Þ ¼ sDP.

Now the Smoluchowski equation for the solute – integrated over the
membrane thickness L, eqn (21) – contains the very same term and
one may accordingly rewrite the solute flux as

Js ¼ �
Ds

L
A Dcs � s

DP
kBT

� �
(28)

The solute flux is therefore intimately related to the osmotic
pressure. As is transparent from this equation, the van ’t Hoff
osmotic pressure is fully expressed, i.e. DP = kBTDcs, only when
the solute flux vanishes Js = 0 (s = 1 and os = 0). Reversely for a fully

permeable membrane Js ¼ �
DsA

L
Dcs, and there is no osmotic

pressure (s = 0 and os = 1). Finally this equation can be rewritten as
Js = �DsA (1 � s)Dcs/L, so that the ‘‘mobility’’ coefficient os is
related here to the reflection coefficient as os = 1 � s.

In this first part we have reviewed the basic understanding
of osmosis, from the historical discovery of the phenomenon
to the precise understanding of the effect in terms of
thermodynamic forces. Although simplistic, the previous
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mechanical/kinetic approach provides a fruitful and complemen-
tary perspective on osmotic transport, which suggests a number of
generalizations – that we will discuss below. It also reveals that the
key aspect of osmosis is not really the membrane itself, but the
existence of differential forces acting separately on the solvent and
the solute. This is crucial to understand a number of phenomena
related to osmosis that we discuss below.

3 Osmosis without a membrane

Situations where differential forces act on the solvent and the
solute occur naturally, especially at interfaces: for example a
charged surface does act specifically on dissolved ions, repelling
co-ions and attracting counter-ions; or a neutral hard wall will
repel polymers via excluded volume. As we now discuss in the
following sections, these specific forces may be harnessed to
induce interfacially-driven osmotic flows.

The geometry we will consider here involves a solid surface
along which a solute gradient, or more generally a thermo-
dynamic force – an electric field, a temperature gradient. . . – is
established, as sketched in Fig. 6 and 7. Under an electric field,
the net electric forces occurring within the diffuse interface
close to the solid will push the fluid and generate a so-called
electro-osmosis flow for the solvent. But as we will show below,
a solute gradient rcN parallel to the surface can also generate
fluid motion whose amplitude is proportional to rcN:

vDO p rcN. (29)

This latter phenomenon is usually coined as diffusio-osmosis.
The phenomenon bears some fundamental analogy with Marangoni
effects where a gradient of surface tension at an interface may drive
fluid (or reversely particle) motion as vf p rgLV.54 Now extending
Marangoni flows to solid–fluid interfaces is definitely not obvious,
but it was recognized by Derjaguin and collaborators55,56 that the
diffuse nature of the interface may allow the fluid to ‘‘slip’’ over the
solid surface under a concentration gradient. Diffusio-osmosis is
accordingly an interfacially driven flow, and takes its origin in the
interfacial structure of the solute close to the solid surface, within the
first few nanometers close to the surface.

3.1 From electro- to diffusio-osmosis

3.1.1 From electro-osmosis. . .. Let us start with the canonical
example of electro-osmosis, i.e. the fluid flow close to a solid
surface generated under an applied electric field. A solution
containing ions will build up a so-called electric double layer
(EDL) close to any charged surface: counter-ions are attracted by
the surface charge, while co-ions are repelled. The surface charge,
say S, is balanced in the fluid by a density of charge re = e(c+� c�),
defined as the difference between the density of positive and
negative ions (assuming monovalent ions here for illustrative
purposes). The resulting double layer is diffuse and extends over
a finite width, see Fig. 6. The structure of the EDL was amply
discussed in many textbooks and reviews, and we refer in
particular to ref. 57–59 for further insights. As a rule of thumb,
the extension of the EDL is typically given by the Debye screening

length,58,60 defined as

lD ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8p‘Bcs
p (30)

where cs is the (bulk) salt concentration in the bulk and cB =
e2/4pekBT is the Bjerrum length (e is the dielectric permittivity of
water). Typically for water at room temperature, cB = 0.7 nm and
the Debye length ranges between 30 nm for a salt concentration of
10�4 mol l�1 to 0.3 nm for a 1 mol l�1 salt concentration.

Within the EDL, there is a net charge density in the fluid,
and whenever an external electric field is applied to the fluid
(parallel to the surface), this will generate a net bulk force reE.
The Stokes equation for the fluid velocity writes accordingly in
the direction x (parallel to the solid interface)

Zqzzv + reE = 0 (31)

where z is the direction perpendicular to the interface. The
pressure-gradient term vanishes for the shear-flow considered
here. Using the Poisson equation re = �eqzzVe, relating the
charge density to the electric potential Ve in the fluid, one can
integrate twice eqn (31) to obtain the velocity profile

vðzÞ ¼ �eE
Z

Veðz ¼ 0Þ � VeðzÞ½ � (32)

where a no-slip boundary condition was assumed here. The
electrical potential at the interface is usually identified as the
zeta potential Ve(z = 0) = z. The electro-osmotic velocity is
constant beyond the EDL and reaches its asymptotic value

vN = mEOE (33)

where mEO ¼ �
ez
Z

is the electro-osmotic mobility. In the presence

of hydrodynamic slippage on the surface, the electro-osmotic
mobility is typically enhanced by a factor 1 + b/lD, where b is the
slip length, see ref. 62–64 for more details. We finally note that
the z-potential may be rewritten as a function of the electrical

Fig. 6 Electro-osmosis. (a) In the presence of a surface charge S, an
electrical double layer forms extending typically over a distance fixed by
the Debye length lD. Under an applied electric field E

-
parallel to the

surface, a net electric force builds up due to the unbalanced charge within
the electric double layer. It drives a solvent flow parallel to the surface,
extending as a flat flow profile into the bulk. (b) Visualization of the electro-
osmotic flow in a capillary, via the displacement of (neutral) tagged
molecules. In contrast to the parabolic Poiseuille flow, the electro-
osmotic flow profile takes the form of a plug flow, which barely disperses
the dye. Reproduced from ref. 61 with permission from Springer Nature,
copyright 2005.
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concentration re (by integrating twice eqn (31))

z ¼ �1
e

ð1
0

zreðzÞdz: (34)

From a physical point of view, electro-osmosis may be seen
as a force balance between the viscous friction force at the
interface and the electrostatic driving force within the EDL. The
velocity field is expected to establish over the Debye length lD

and thus the fluid friction force is typically BZvN/lD. Now the
body electrical force within the EDL is simply S � E where S is
the surface charge. From Gauss’ electrostatic boundary condition,
we have S = �eqzVe|z=0 E �ez/lD. Altogether the force balance
thus takes the form

Z
v1
lD
� S� E � � ez

lD
� E (35)

and this leads accordingly to the expression in eqn (33) for the
electro-osmotic mobility. A simple extension of this argument
highlights immediately the potential role of hydrodynamic slip-
page: with a slip length b, the viscous friction force will reduce to
BZvN/(lD + b) while keeping the body force identical, so that the
electro-osmotic velocity will be increased by a factor 1 + b/lD.
Altogether, the electro-osmotic flow thus takes its origin within
the very few nanometers close to the boundary and can be
therefore strongly affected by molecular details: hydrodynamic
slippage,62 nanoscale roughness,65 contamination,66 dielectric
inhomogeneities,67 etc. This makes the underlying physics of
interfacial transport both complex and very rich.

3.1.2 . . .To diffusio-osmosis. . .. While electro-osmosis cor-
responds to interfacially driven fluid motion under an external
electric field, diffusio-osmotic motion occurs under the gradi-
ent of a solute, qxcN, in the vicinity of a solid surface – see
Fig. 7. Similarly to electro-osmosis, a key ingredient is the
specific interaction of the solute with the surface, which occurs
within a diffuse layer of finite thickness. Reflecting the discus-
sion of osmosis across a model potential barrier in Section 2.4,
the solute will be assumed to interact via an external potential
U(z) with the solid surface. One noticeable difference to the

previous membrane case though is that this potential now acts
perpendicular to the solid surface and solute gradient (i.e.
depending on z but not on x), see Fig. 7.

Diffusio-osmosis with neutral solutes. We first consider the
case of neutral solutes. The fluid velocity and solute density
obey the coupled Stokes and Smoluchowski equations, which
write in the stationary state as:

0 ¼ �=pþ Z=2vþ �=Uð Þ;

0 ¼ �= � �Ds=cs þ lscs �=Uð Þ þ vcs½ �
(36)

At infinity, we assume a fixed gradient qxcN along x for the
solute concentration.

These coupled equations are strongly entangled. However in
the limit of a thin interfacial layer – corresponding to a range
for the potential U(z) which is small compared to the lateral
variations of the solute gradient, one expects the concentration
profile to relax quickly to a local equilibrium across the diffuse
layer cs(x,z) C cN(x)exp(�U(z)/kBT).

Turning now to the fluid transport equation, the Stokes
equation projected along the z direction writes simply

0 = �qzp + cs(�qzU) (37)

because the z component of fluid velocity is expected to be
negligible for thin layers. We can integrate this pressure
balance to obtain

p(x,z) � pN = kBTcs(x,z) � kBTcN(x) (38)

which can be seen as an osmotic equilibrium across the diffuse
layer.68 In simple terms, the existence of a specific solute-wall
interaction allows the membrane to ‘‘express’’ the solute osmotic
pressure P(x,z) = kBTcs(x,z) within the interfacial layer. However
the effects of the latter disappear in the bulk (z - N) and there
is no bulk osmotic pressure gradient.

Now inserting the pressure from eqn (38) into the Stokes
equation projected along x, see eqn (36), leads to

Zqz
2vx � qx[p(x,z) � pN] = 0. (39)

Following the same steps as for the electro-osmosis, one
obtains the fluid velocity along the x coordinate in the bulk
fluid as

vN = mDO � (�kBTrxcN) (40)

with the diffusio-osmotic mobility mDO given by

mDO ¼
1

Z

ð1
0

z
cs x; zð Þ
c1

� 1

	 

dz

¼ 1

Z

ð1
0

z exp
�UðzÞ
kBT

	 

� 1

	 

dz:

(41)

This expression is similar to eqn (34) for the electro-osmotic
mobility. The effect of hydrodynamic slippage on the surface
can also be taken into account, along the same lines as in
ref. 69 and 70 and leads to an enhancement factor of the
diffusio-osmotic mobility scaling as (1 + b/l), where b is the

Fig. 7 Diffusio-osmosis. A gradient of solute imposed far from the surface
induces a fluid flow. Here the solute is assumed to interact with the surface
via an interaction potential U(z) (an adsorbing profile on the figure). The
solute interaction with the surface induces a force on the fluid, here
towards the surface, which is higher in the more concentrated area. This
normal force converts into a parallel pressure drop which generates a fluid
flow from high to low concentrations (and reversely for a repelling
interaction).
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slip length and l is the typical width of the diffuse interface.
The amplification effect is expected to be massive on super-
hydrophobic surfaces70 and amplification by orders of magnitude
are predicted. Interestingly for strongly hydrophobic surfaces where
the liquid–vapor interface dominates, the diffusio-osmotic velocity

takes the physically transparent expression vDO ¼
beff

Z
rgLV, where

beff is the effective slip length on the superhydrophobic surface and
gLV is the (solute concentration dependent) surface tension of the
liquid–vapor interface.

Similarly as in electro-osmosis, diffusio-osmosis can be
interpreted in terms of a simple force balance within the
diffuse layer. A first integration of eqn (39) indeed shows that
diffusio-osmotic flow results from the balance between the
viscous stress on the surface and an osmotic pressure gradient
integrated over the diffuse layer:

0 ¼ Z@xvxjwall þ
ð1
0

dz@x Pðx; zÞ �P1ðxÞ½ � (42)

Simple estimates of the various terms lead to a more
qualitative version of this force balance as

Z
v1
l
� 	l� �kBTrxc1ð Þ (43)

where l is defined here as the range of the potential U, and
the 	 sign depends on whether the solute is attracted or depleted

by the surface. This leads to v1 � 	
l2

Z
� �kBTrxc1ð Þ in full

agreement with eqn (40) and (41).
Diffusio-osmosis is definitely an osmotic flow, e.g. a flow

driven by an osmotic pressure gradient located within the
diffuse layer. However the direction of the diffusio-osmotic
flow can be along or against the gradient of the solute, in
strong contrast to bare osmosis which induces a flow towards
the highest solute concentration. That is highlighted in the
expression of the diffusio-osmotic mobility, eqn (41), which can
be positive or negative depending on the attractive or repulsive
nature of the interaction potential U(z). As a rule of thumb, the
sign of the mobility will be dominantly determined by the
adsorption G ¼

Ð1
0 dz cðx; zÞ=c1ðxÞ � 1ð Þ. If there is a surface

excess (G 4 0 or U(z) o 0), the solvent flow goes towards the
low concentrated area (mDO 4 0). That may appear as surprising
because it amounts to concentrating even more the
already concentrated solution; we shall discuss this apparent
paradox in Section 3.2.2. Reversely a surface depletion resulting
from a repulsion of the solute from the wall (Go 0 or U(z) 4 0)
reverses the direction of the solvent flow towards the high
concentrated zone (mDO o 0). An interesting limiting case for
this behavior is exemplified by a solute interacting with the wall
via steric effect, i.e. hard-core excluded volumes. For a solute
particle with radius R, the mobility in eqn (39) reduces to

mstericDO ¼ �
R2

2Z
: (44)

This behavior was measured in particular in ref. 25 for the
diffusio-osmotic flow under a neutral polymer concentration

gradient, see Fig. 8 for an illustration. A final remark is that this
simple rule for the correlation between adsorption and the sign
of diffusio-osmosis is not exact and may fail for more complex
interactions between the solute and the wall, for instance with
an oscillatory spatial dependence of the concentration profile
due to layering. The sign of mDO may then be expected to differ
from the sign of the adsorption G. In this case, no obvious
conclusion can be made for the direction of the diffusio-
osmotic velocity and a full calculation has to be made, see for
example ref. 26.

Diffusio-osmosis with electrolytes. We now discuss specifically
the case of diffusio-osmosis under salinity gradients. Here, as
for electro-osmosis, the diffuse layer corresponds to the electric
double layer created close to a charged surface, see Fig. 9. The
derivation follows similar steps as above, from eqn (36)–(41),
except that one has to take into account the spatial distribution

Fig. 8 Experimental evidence for diffusio-osmosis. (a) A gradient of
polyethylene glycol polymer PEG is maintained along a nanochannel
thanks to lateral microchannels acting as reservoirs. The nanochannel is
160 nm in thickness and is fully permeable to PEG. Under a PEG concen-
tration gradient, a diffusio-osmotic flow arises: water moves towards higher
concentrations of PEG. The flow rate Q is measured via the concentration
profile of a dye. (b) Measured diffusio-osmotic flux Q as a function of the
PEG concentration difference, showing a velocity proportional to the PEG
concentration difference. This behavior and the sign of the effect are
consistent with a steric exclusion of PEG on the surfaces, as predicted in
eqn (44). (a) and (b) are reproduced and adapted from ref. 25 with permis-
sion from the American Physical Society (APS), copyright 2014.

Fig. 9 Diffusio-osmosis with charged electrolytes. (a) Geometry; an elec-
trolyte concentration difference is imposed far from the charged interface.
The electrical interaction with the surface induces an (attractive) electro-
static force – sketched with arrows – on the fluid which is larger where the
salt concentration is larger, hereby inducing a net flow towards the low
salinity region. (b) Measurement of the diffusio-osmotic flux as a function
of the difference of the logarithm of the salt concentration between two
reservoirs, in a similar way as in Fig. 8. Note the reversal of the sign as
compared to Fig. 8b. Reproduced from ref. 25 with permission from the
APS, copyright 2014.
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of both the counter- and co-ions in the EDL that follow a
Poisson–Boltzmann distribution, see ref. 71. In this case the
diffusio-osmotic velocity is shown to take the form

vN = DDO(�r log cN) (45)

where we introduced a mobility DDO which has now the units of
a diffusion coefficient. It takes the expression54

DDO ¼
kBT

2pZ‘B
� log cosh2

F0

4

	 

(46)

where F0 = eV0/kBT is the dimensionless surface potential V0 (usually
identified with the zeta potential). Note that for an electrolyte with
unequal diffusion coefficients for the anions and cations (D+ a D�),
a diffusion electric field builds up under the gradient of the salt
concentration (if no current exists in the bulk). This takes the form

Ediff ¼
kBT

e
dr log c1 with d = (D+ � D�)/(D+ + D�) and adds a

supplementary electro-osmotic contribution to the diffusio-

osmotic velocity as vdiff ¼ �
ez
Z
� Ediff . Accordingly this leads to

a supplementary contribution to the mobility as:

Ddiff
DO ¼ �

ez
Z
� kBT

e
d (47)

An important remark is that for electrolytes the velocity is
proportional to the gradient of the logarithm of salt concen-
tration, in contrast to solutes where it is basically linear in the
gradient, see eqn (40). We will refer to this dependence as ‘‘log-
sensing’’ by analogy to behaviors occurring for the chemotaxis
of biological entities (e.g. bacteria). Such a dependence may be
understood on the basis of the simple scaling argument based
on the force balance above, see eqn (43). Indeed the thickness
of the diffuse layer is now given by the Debye length, and

v1 ’
lD2

Z
� �kBTrxc1ð Þ. Since the Debye length depends on

the salt concentration as lD
2 = (8plBcN)�1, one obtains:

v1 � �
kBT

8pZlB
rx log c1: (48)

which is qualitatively similar to the exact results in eqn (46) and
predicts log-sensing for diffusio-osmosis with electrolytes.

This behavior is confirmed by experimental investigations of
water flows under salinity gradients in nanofluidic circuits,25 see
Fig. 9. Diffusio-osmotic flow of water under salinity gradients was
also evidenced across carbon nanotube membranes,72 confirming
further that diffusio-osmosis was acting against bare osmosis. In an
alternative configuration, diffusio-osmosis was also shown to
induce very large ionic currents under salinity gradients.73–75 We
will come back to such cross effects associated with diffusio-
osmosis in Section 3.2.1, as well as in the section dedicated to
blue energy harvesting, Section 6.3. In a very different field,
diffusio-osmotic flows were also shown to strongly impact and
shape the reactive fluid flows occurring in the solid Earth.76 Log-
sensing has also many counter-intuitive consequences and a variety
of applications,77,78 which we will discuss more specifically in the
context of diffusio-phoresis in Section 5.

Solvo-osmosis and diffusio-osmosis with mixtures. Up to now
we considered merely dilute solute solutions, but all previous
results can be generalized to mixtures of liquids with any molar
fraction of its constituents. The key ingredient remains that the two
constituents interact differently with the solid substrate. As shown
in ref. 51, the diffusio-osmotic velocity now takes the expression

vN = mDO(�rxP[XN(x)]), (49)

where P is the generalized osmotic pressure defined in eqn (9),
calculated for the molar fraction XN, hence generalizing the
expression in eqn (40). The diffusio-osmotic mobility mDO is still

given by the initial expression mDO ¼
1

Z

Ð1
0 dz0z0

csðx; z0Þ
c1ðxÞ

� 1

	 

.

However, for a solute-substrate interaction potential U, the
concentration profile cs(x,z) is now implicitly related to the
value in the bulk cN(x) via the local equilibrium condition
m[cs(x,z)] + U(z) C m[cN(x)].

Diffusio-osmosis with ethanol–water mixtures was investi-
gated recently in ref. 26. But the majority of existing experi-
mental investigations merely explored the reverse configuration
of phoretic transport of particles under gradients of liquid
composition, denoted as ‘‘solvo-phoresis’’.21,79 Interestingly in
ref. 21, the phoretic transport of colloidal (polystyrene) particles
in ethanol–water mixtures resulted in a ‘‘log-sensing’’ behavior
of the particle diffusio-phoretic velocity, obeying V = DSPr log X,
with here X the ethanol mole fraction.

3.1.3 . . . And electro-chemical equivalence. In the case of
electrolytes, the two previous transport phenomena, electro-
and diffusio- osmosis, are fundamentally intertwined. Indeed,
from the thermodynamic point of view, the chemical potential
and the electric potential contributions merge into the electro-
chemical potential: mel = m + qV (with q the ion charge and V the
electric potential). There is accordingly a deep analogy when
driving the system under gradients of chemical potential
(diffusio-osmosis) or driving under gradients of electric
potential (electro-osmosis). An illuminating discussion on this
point and the corresponding force balance is provided by T.
Squires in ref. 59 and 80 and we reproduce the essentials of the
argumentation here.

Let us consider in full generality that a gradient of the
electrochemical potential is applied in the bulk far from the
boundary, rmB

el,i (along the direction of the solid surface, say x);
the index i runs over the various ion species in the solution. As
we discussed above for both electro- and diffusio-osmosis, this
will generate net thermodynamic forces on individual ion
specie i, which may be written as fi(x,z) = �rmel,i(x,z). A key
remark is that the electrochemical potential is approximately
constant across the EDL, i.e. mel,i(x,z) C mB

el,i(x), so that the
individual force rewrites fi(z) C �rmB

el,i. The interfacial motion
results from the forces in excess to the bulk, so that the
corresponding total force acting on the fluid rewrites

fT ¼
X
i¼1;n

Dci � fiðzÞ ¼
X
i¼1;n

Dci � �rmBel;i
� �

(50)

where the sum runs over n ion species and Dci = ci(x,z) � cB
i (x) is

the excess ion concentration in the boundary layer, as compared

Chem Soc Rev Review Article

Pu
bl

is
he

d 
on

 2
2 

M
ay

 2
01

9.
 D

ow
nl

oa
de

d 
by

 N
ew

 Y
or

k 
U

ni
ve

rs
ity

 o
n 

8/
13

/2
01

9 
5:

04
:3

2 
PM

. 
View Article Online

https://doi.org/10.1039/c8cs00420j


This journal is©The Royal Society of Chemistry 2019 Chem. Soc. Rev., 2019, 48, 3102--3144 | 3113

to the bulk. This driving force will generate a flow according to
the Stokes equation Zqz

2vx + fT = 0 and following the same steps
as above, one obtains the far field slip velocity as

v1 ¼ �
X
i¼1;n

1

Z
rmBel;i

ð1
0

dz zDciðzÞ �
X
i

Mi �rmBel;i
� �

; (51)

where the mobility Mi takes the expression Mi ¼
1

Z

Ð1
0 dz zDciðzÞ.

For symmetric and monovalent ions, these mobilities can be
exactly calculated using Poisson–Boltzmann framework, leading to

M	 ¼
e
eZ

z
2
þ kBT

e
� log cosh2

F0

4

	 
� �
(52)

with F0 = eV0/kBT the dimensionless surface potential and here
z � V0 the zeta potential.

Under a constant electric field rmB
	 = 8eE0 and the electro-

osmotic mobility is predicted as mEO¼
1

e
Mþ �M�ð Þ, in full

agreement with the previous result in eqn (33) and (34). Under
an imposed ionic strength gradient in the bulk, then rmB

	 =
kBTr log c	 are identical and MDO = M+ + M� � DDO, again in
full agreement with the previous result in eqn (46).

3.2 Transport matrix and symmetry considerations

3.2.1 Transport matrix and cross fluxes. As introduced in
Section 2.3, the framework of irreversible processes allows one
to write a linear relation between thermodynamic forces and
fluxes.30 Adding the electric forces to the set of forces, one may
generalize the results in eqn (14) to obtain linear transport
equations now relating the solvent flux Q, excess solute flux Js �
csQ and electric current Ie to the pressure gradient �rp,
chemical potential gradient �rm and the applied electric
field �rVe, and summarized as

Q

Js � csQ

Ie

0
BBB@

1
CCCA ¼ L�

�rp

�rm

�rVe

0
BBB@

1
CCCA; (53)

Due to Onsager principle, this matrix is symmetric and
positive definite.30 Each term of this matrix corresponds to a
specific transport phenomenon. Diagonal terms are associated
respectively with permeability (characterizing solvent flux
under a pressure drop), diffusion (characterizing solute
flux under an applied solute gradient) and electrical conduc-
tance (characterizing ionic current under an applied electric
field). The off-diagonal terms correspond to cross effects. We
detail below the cross effects that are all recapitulated in
Fig. 10.

In the first row of the matrix, electro-osmosis and diffusio-
osmosis – explored so far – correspond to the terms relating
the solvent flux Q to a chemical gradient �rm and an electric
field �rVe respectively. A key consequence of the symmetry of
the matrix is that the same mobilities characterize symmetric
transport phenomena. For example consider the first column of
the matrix L, one finds that the electro-osmotic mobility and
diffusio-osmotic mobility also describe respectively the electric

current and excess solute flux generated under a pressure
drop, as

Ie ¼AmEO � �rpð Þ

Js � csQ ¼AmDO � �rpð Þ
(54)

where A is the channel cross section. The first corresponds to
the so-called streaming current and takes its origin in the
motion of mobile ions in the EDL which are carried by the
pressure-driven flow; the pressure-driven excess solute flux has
a similar physical origin.

Streaming currents are commonly measured in experiments,60,62

even down to single carbon and boron-nitride nanotubes.73 To our
knowledge, no experimental measurement of pressure-driven excess
solute flux has been performed up to now. However this is not the
case in molecular dynamics simulations where it is far easier to
measure the diffusio-osmotic mobility via the pressure-driven excess
flux26,69 – see details in Section 3.5.

Now, the transport matrix suggests that an electric current
can be generated under an osmotic gradient, which we term
here the diffusio-osmotic ion current, following

IDO = Kosm � (�r log cN). (55)

Let us consider a channel in the form of a slit of width w and
height h (with w c h to simplify). Using Poisson–Boltzmann to
describe the EDL, one can calculate the corresponding osmotic
electric current64,73,81 and the mobility takes the form

Kosm ¼ a� ð�SÞ kBT
2pZ‘B

1� sinh�1 w
w

	 

(56)

where a C 2w is the perimeter of the channel cross section. In

this expression we introduced w ¼ sinh
jF0j
2

with F0 = eV0/kBT the

dimensionless surface potential V0. In the Poisson–Boltzmann
framework w is related to the surface charge S according to
w = 2pcBlD|S|/e with lD the Debye length, so that w p |S|. This
formula can be extended to take slippage on the surface into
account, as well as mobile surface charges.64 More precisely the
diffusio-osmotic ion current takes its origin in the motion of
ions in the EDL which are carried by the diffusio-osmotic flow.
As a simple estimate we may write that IDO E (�S) � vDO, where
vDO is the diffusio-osmotic velocity: using the expression eqn (40)
for vDO, one indeed recovers eqn (56). However the prediction
of eqn (56) reports a more complex dependence, since the linear
dependence in S is only valid for large enough S, while for low S,
one finds that Kosm p S3, i.e. vanishingly small. Such osmotically

Fig. 10 Transport matrix. Explicit transport matrix L as presented in
eqn (53), with colors indicating symmetric terms.
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driven currents have been measured experimentally in various
systems, nanochannels, single nanotubes, single nanopores – see
ref. 73, 74, 82 and 83 – to cite a few. This effect finds important
applications in the context of blue energy harvesting,75 that we will
explore in detail in Section 6.3.

3.2.2 Entropy production with diffusio-osmosis. We pointed
out above that the sign of the diffusio-osmostic mobility, mDO,
can be either positive or negative, so that the corresponding flux
can be along or against the concentration gradient. A negative
mDO may appear at first sight striking since the direction of the
solvent flow corresponds to that of an increase in salt concen-
tration, thus leading to an apparent violation of the second
principle. This is however not the case, as it can be verified from
a calculation taking into account all relevant fluxes. To highlight
this situation, let us consider a membrane separating two
reservoirs with fixed volumes; the concentration on the left/right

reservoir is csðtÞ ¼ c0 

DcsðtÞ

2
. The pore size is assumed here to

be larger than the solute diameter so that the membrane is
permeable to the solute and there is no bare osmotic pressure. A
salinity gradient however generates a diffusio-osmotic flow on
the pore surface. Based on the transport matrix formulation,
eqn (14), one may write the solvent and (excess) solute fluxes as a
function of the solute concentration and pressure gradients
according to:

Q ¼Ap

L
kð�DpÞ þ mDO �kBTDcsð Þ½ �

Js � c0Q ¼
Ap

L
mDOc0ð�DpÞ þ ls �kBTDcsð Þ½ �

(57)

with Ap the total (open) pore area of the membrane, L its
thickness and ls = Ds/kBT the diffusive mobility of the solute
across the membrane, defined in terms of the solute diffusion
coefficient; k is defined in terms of the permeance as
Lhyd� kAp/L (note that k = khyd/Z where khyd is the permeability
introduced above). The second principle imposes that the trans-
port matrix in eqn (14) and (57) should be definite positive.
Accordingly, the determinant detðLÞ / kls � mDO

2c0 must be
strictly positive.

On the other hand, since the volume is fixed, the flux
vanishes, Q = 0, and the solute flux writes

Js ¼
Ap

L

1

k
lsk� mDO

2c0
� �

�kBTDcsð Þ (58)

we find that the term in brackets is proportional to the
determinant detðLÞ, and therefore is constrained by the second
principle to be positive. Accordingly, whatever the sign of the
diffusio-osmotic mobility mDO and the corresponding diffusio-
osmotic solvent flux, the total solute flux will go down the
solute gradient, as expected from the second principle.

3.3 The peculiarity of diffusio-osmosis across an orifice

In the previous sections, we implicitly considered (diffusio-
osmotic) transport across long channels, so that fluid flow is
translationally invariant along the channel’s length. However
transport across thin membrane pores84–86 raises the question

of the specificity of these geometries in which the channel
length L may decrease down to molecular lengths, in particular
with the advent of 2D materials such as graphene, h-BN and
MoS2 as membranes for fluidic transport.74,87,88 For example,
recent measurements across nanopores in MoS2 membranes
reported huge diffusio-osmotic ion currents under salinity
gradients.74 In another experiment, gradients of salts were
shown to strongly increase the capture rate of DNA molecules
across solid-state nanopores.84

For long channels the driving force for fluid transport, e.g.
the gradient of the chemical potential, is expected to scale as its
inverse length, rm = Dm/L. This would suggest that the driving
force diverges as 1/L in the limit of nanopores where L - 0.
However entrance effects level off this diverging behavior to
a value typically fixed by the lateral size of the pore, say a its
radius – see Fig. 11. As a rule of thumb, one may expect that
rm E Dm/a (see for example ref. 89 for the conductance of ion
channels). However the flow in and out of the pore is expected to
be strongly disturbed, as shown for example for electro-osmosis
across nanopores in thin membranes.90–92 Similar effects are
accordingly expected to apply to diffusio-osmotic transport.

The diffusio-osmotic flow across a nanopore with vanishing
thickness was recently calculated analytically by Rankin et al.93

The calculation is best performed in oblate-spheroidal coordi-
nates, in line with a similar calculation for electro-osmosis in
ref. 90. The averaged diffusio-osmotic velocity vDO across the
pore, which is defined in terms of the diffusio-osmotic flux
Q = pa2vDO, is proportional to Dcs the difference (and not the
gradient as in eqn (40)) of the solute concentration between the
two sides of the membrane: vDO = mpore

DO (�kBTDcs). The general
expression for the mobility derived in ref. 93 takes the form

mporeDO ¼ �
2a

p2Z

ð1
0

dxx2
ð1
0

dn
e�U=kBT � 1

1þ n2 (59)

where (n,x) are the oblate spheroidal coordinates (iso-n and
iso-x curves are respectively oblate spheroids and hyperboloids
of revolution). This expression involves a complex spatial

Fig. 11 Peculiarity of pressure flow across an orifice. (a) Simulated flow
velocity and streamlines across a pore with, say, radius a = 10 nm and
thickness L = a/10 under a pressure drop Dp = 1 bar. The scale bar is 10 nm.
The streamlines are spaced equally in magnitude at the center of the pore.
(b) Simulated flow velocity and streamlines across a channel with same
radius a and thickness L = 10a under the same pressure drop. The scales
(velocity and geometry) are the same as for (a). For readability the whole
channel length is not plotted. (center) Normalized velocity profile
(perpendicular to the membrane) at the center of the membrane, compar-
ing the channel and pore cases.
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average of the Boltzmann weight e�U/kBT � 1, which should be
compared to the corresponding simple expression in eqn (41)
for the planar case.

The above result can be simplified for certain functional forms
of the potential U. For example, assuming that the interaction
potential U depends only on variable x allows the mobility to be
rewritten in terms of the two-dimensional interaction within the

pore only as mporeDO ¼
1

pa2Z

Ð a
0drr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � r2

p
e�UðrÞ=kBT � 1
� �

with r

the axi-symmetric distance to the center of the pore.93 This expres-
sion for the mobility can be recovered thanks to the symmetry of
the transport matrix eqn (53). Indeed mpore

DO can also be calculated in
terms of the excess solute flux under a pressure driven flow: in this
case the velocity profile was shown to be semicircular (and not
parabolic),94–96 see Fig. 11, and the excess solute flux conveyed by
the circular flow reduces to the above expression.

The complexity associated with diffusio-osmosis across an orifice
is also highlighted by the predicted dependence of the mobility on
the pore size a and the range l of the interaction U. Let us focus the
discussion for the thin diffuse layer case, where l { a (we refer to
ref. 93 for a full discussion). As a reference, the diffusio-osmotic
mobility across a long channel with length L was shown previously to

scale as mDO �
l2

ZL
, see e.g. eqn (43). However, for an orifice in a thin

membrane, Rankin et al. showed on the basis of eqn (59) that the
mobility exhibits a variety of non-trivial scalings, with mpore

DO B lga1�g,
and an exponent g that depends on the details of the interaction
potential U. For example, for the potential discussed above, which
assumes a dependence as U(x), one finds g = 3/2; but for a potential
depending on the distance to the membrane or to the edge of the
pore, then g = 2.93 In the latter case, g = 2, the diffusio-osmotic
mobility scales as mpore

DO B l2/a, which corresponds to the long
channel result with the length L replaced by a. But for other values
of the exponent g this simple rule of thumb does not apply, making
the diffusio-osmotic transport across the orifice quite peculiar.

As a last comment, it is possible to extend qualitatively these
results to electrolyte solutions, by assuming that the potential
range l identifies with the Debye length. This suggests an
anomalous salinity dependence for the diffusio-osmotic mobi-
lity DDO = vDO/[�kBTD log cs] p cs

1�g/2, in contrast to long
channels where DDO p c0

s. The nanopore geometry may thus
depart from the log-sensing behavior of diffusio-osmotic trans-
port under salinity gradients. These results remain however to
be fully assessed experimentally.

3.4 Alternative interfacial transport: thermo-osmosis

Extending on electro- and diffusio-osmosis, thermo-osmosis
corresponds to fluid motion under gradients of temperature;
see Fig. 12a. Such effects were reported as early as in the
1900s.97,98 Thermo-osmosis was first rationalized in terms of
thermodynamic forces by Derjaguin et al.54,99,100 Similarly as
for diffusio-osmosis in eqn (41) and electro-osmosis in eqn (34),
the net velocity generated far from the surface is predicted as54

v1 ¼
�2
Z

ð1
0

zdhðzÞdz
	 


r logT1 (60)

where TN is the temperature far from the surface and dh(z) is the
excess specific enthalpy in the interfacial layer as compared to the
bulk liquid. If the solid surface is e.g. hydrophilic, then dh(z) t 0
and the flow of water is directed toward higher temperatures, see
Fig. 12 and ref. 101 and 102. An interpretation of thermo-osmosis
(and -phoresis) in terms of interfacial surface tension modification,
and therefore Marangoni-like flow generation, has also been
suggested103 and formalized.104,105 The transport of fluids or
particles under thermal forces led to strong debates between
the interfacial approach discussed above and an ‘‘energetic’’
approach,106–108 which attempts to write the net driving force
acting on a particle as the gradient of a thermodynamic
quantity.106 The resulting Soret coefficient – defined as the
ratio between the thermophoretic mobility and particle diffu-
sion coefficient – highlights a different dependence on the
particle size as compared to the interfacial framework dis-
cussed above. Although attractive, the energetic approach was
then extensively criticized.107,108

As for electro- and diffusio-osmosis, the details of the
interfacial dynamics, for example slippage at the interface, is
expected to strongly affect thermo-osmotic flows. This has been
evidenced for example in molecular dynamics where a huge
enhancement of thermo-osmosis was measured with slip,109,110

although the exact dependence of thermo-osmosis on the inter-
facial properties was measured to be substantially complex.110

We refer to the ref. 102 and 107 for more in-depth discussion on
thermo-osmosis and -phoresis.

Lately thermo-osmosis has gained growing attention in
terms of applications and we briefly comment here on this aspect.
Many applications of the phenomenon are done in the context of
thermo-phoresis, or displacement of colloidal particles under ther-
mal gradients (in a similar way to diffusio-phoresis, see Fig. 18a).
This phenomenon was harvested to manipulate colloids and build
structures107,111–113 with advanced applications in microfluidics101 or
towards DNA detection.114 Among other phenomena, it was shown
that couplings between thermo- and diffusio-phoretic drivings allow
to finely manipulate colloidal structures.115 Also, thermophoresis of
molecules can provide detailed information about particles and

Fig. 12 Thermo-osmosis near an interface. (a) Geometry; a temperature
gradient is imposed far from a hydrophilic surface. A thermal flux from the
hot to the cold region is therefore installed. The interaction of water with
the surface induces a force (light red arrows) that varies along the surface
due to the thermal gradient, inducing a net flow. (b) Thermo-osmotic flow
measured on two different surfaces (going towards the higher tempera-
tures) as a function of the distance to the heat source. Reproduced from
ref. 101 with permission from the APS, copyright 2016.

Review Article Chem Soc Rev

Pu
bl

is
he

d 
on

 2
2 

M
ay

 2
01

9.
 D

ow
nl

oa
de

d 
by

 N
ew

 Y
or

k 
U

ni
ve

rs
ity

 o
n 

8/
13

/2
01

9 
5:

04
:3

2 
PM

. 
View Article Online

https://doi.org/10.1039/c8cs00420j


3116 | Chem. Soc. Rev., 2019, 48, 3102--3144 This journal is©The Royal Society of Chemistry 2019

molecules (size, charge and hydration shell) and this provide
very efficient analytical tools to probe protein in biological
liquids.116,117 In a different context, applications of thermo-
osmosis were suggested for the recovery of water from organic
waste-water,118 as well as for energy harvesting from thermal
differences (and waste heat).110,119,120

3.5 Numerical simulations of (diffusio-)osmotic transport:
methodologies and results

Molecular simulations have now become a highly efficient tool to
explore the fundamental properties of fluids and materials. Mole-
cular dynamics simulate the many-body dynamics of particles and
molecules, either at equilibrium or far from equilibrium, submitted
to various thermodynamic forces. They provide detailed informa-
tion on the molecular processes at play. In the present context of
studying osmotic forces and related fluxes, this represents a key
opportunity to understand the fundamental and subtle origins
underlying interfacial transport and how these can be affected by
the microscopic details of the interface.

Simulating electro-osmosis is relatively straightforward in the
sense that the effect of the electric field converts directly into an
electric force acting on the suspended ions. This has led to
numerous molecular dynamics studies of electro-osmosis, as well
as of streaming currents, allowing to decipher a wealth of phenom-
ena associated with transport within the electric double layer.62,121

Now, simulating diffusio- and thermo-osmosis is by far more
difficult and subtle. Indeed such transport occurs under thermo-
dynamic forces associated with the gradient of concentration or
temperature, and these can not obviously be represented in terms
of mechanical forces acting on the simulated particles. We discuss
in this section recent developments in the numerical methodolo-
gies allowing to perform simulations of osmotic transport.

For bare osmosis, direct simulations can be performed
using two explicit reservoirs with difference of solute concen-
tration. For example such implementation was used by Kalra
et al. in the study of osmosis across carbon nanotubes.122 This
configuration has the drawback that osmosis occurs in the
transient regime since the reservoirs empty/fill during the
osmotic process and this limits statistics. Osmosis was later
rationalized in more simple terms by simplifying the explicit
membrane description to reduce it to a confining potential
acting on the solute only.123–125 This is the numerical pendant
to the mechanical views of osmosis described in Section 2.4.

The numerical implementation of diffusio-osmosis in molecular
dynamics is far more complex since one should be able to represent
the chemical gradient in terms of a microscopic force acting on the
particles. Various methods to investigate diffusio-osmotic transport
were proposed in the recent literature and we discuss them now.

Using symmetry relations to infer transport coefficients. It
turns out that it is far easier to calculate the diffusio-osmotic
mobility by exploiting the symmetry of the transport matrix.
Recalling the general relation between fluxes and forces,

Q

Js � csQ

 !
¼

L11 L12

L21 L22

 !
�

�Dp

�kBTD log cs

 !
: (61)

the Onsager symmetry for the transport matrix implies that
L21 = L12. Accordingly, calculating the diffusio-osmotic mobility
as a water flux under a concentration gradient, here L12 =
Q/(�kBTD log cs), is therefore equivalent to calculating the
excess solute flux under a pressure gradient, here L21 =
( Js� csQ)/(�Dp) – see Fig. 13a. The latter is far easier to implement
numerically in non-equilibrium molecular dynamics (NEMD) since
it requires only to generate a pressure-driven flow and measure the
integrated solute flux (or locally the velocity and solute concen-
tration profile). This can be performed with periodic boundary
conditions along the flow, so that the resulting diffusio-osmotic
mobility is indeed characteristic of the liquid–solid interface
under scrunity, and does not depend on e.g. entrance effects
into the pore. This methodology was successfully applied to
quantify the diffusio-osmotic mobility on a variety of interfaces,
including superhydrophobic surfaces, graphene, and with
various liquids.26,69,70,110 We discuss below some results of
the simulations.

Equilibrium fluctuations for linear response coefficients.
Transport coefficients may also be inferred from equilibrium
fluctuations by making use of Green–Kubo (GK) relations for
the various mobilities. The transport coefficients introduced in
the transport matrix L can indeed be written in terms of a time-
correlation function of the fluctuating fluxes Qi at thermal equili-
brium. Such formal relations are obtained thanks to linear-response
theory and the fluctuation–dissipation theorem.126–128 They provide
generic expressions for the non-equilibrium mobilities in terms of
equilibrium correlation functions in the form

Lij ¼
V

kBT

ð1
0

dt QiðtÞQjð0Þ
 �

(62)

where V is the system volume and {Qi} are the fluxes under
scrutiny. The symmetry of the transport matrix originates in
the time-symmetry of the underlying microscopic dynamics.20

The simplest route to obtain the Green–Kubo formula for the

Fig. 13 Non-equilibrium molecular dynamics of osmotic interfacial trans-
port. Inspired from ref. 125. (a) Excess flux under pressure gradient. The
pressure gradient is obtained by applying a force acting on each particle
and the solute flux in excess to the bulk Js � csQ is measured. (b) NEMD
method to simulate interfacial transport under chemical potential gradi-
ents. The chemical potential gradient is modeled as a forward force per
solute particle (red) and a properly defined counter force per solvent
particle (blue) such that the total force on the fluid in the bulk is zero. The
local diffusio-osmotic velocity profile is directly measured.
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diffusio-osmotic mobility is to consider the solute excess flux
generated under a pressure drop since the latter is equivalent to
a body force applied to all system particles. The linear-response
formalism then immediately leads to125

L21 ¼ L21 ¼
V

kBT

ð1
0

ðJs � c1QÞðtÞQð0Þh idt: (63)

In the case of a channel with length L and cross area A, one

has L21 ¼ L21 �
A

L
mDO. We refer to ref. 125 and 129 for detailed

derivations of these GK equations.
These GK formula allow to calculate numerically the diffusio-

osmotic mobility, as well as any off-diagonal terms of eqn (53), by
estimating the correlation functions in eqn (63) in equilibrium
simulations. This approach was followed in ref. 125, 129 and
130 and the resulting mobilities were successfully compared with
results of NEMD simulations, as discussed below.

Non-equilibrium molecular dynamics and mechanical represen-
tation of chemical gradients. While the equilibrium approach
provides proper foundations to calculate diffusio-osmosis, non-
equilibrium simulations proves usually more practical to calculate
transport coefficients, e.g. in terms of statistics. However, as we
emphasized above, this requires to build a proper numerical
scheme to implement a mechanical equivalent of the chemical
potential gradient. One interesting route was suggested by Yoshida
et al. in ref. 129 and then applied to electro- and diffusio-osmotic
transport of electrolytes: the authors ran different simulations
where forces fj are applied separately to each individual specie,
here {solvent, anions, cations}, allowing to calculate the corres-
ponding individual fluxes Qi and deduce the mobilities for the
individual species Mi,j = Qi/fj; the electro- and diffusio-osmotic
mobilities are then calculated by proper linear combinations of
the mobilities of individual species, in order to deduce the electro-
and diffusio-osmosis. This approach echoes directly the discussion
in Section 3.1.3, in which the electro-osmotic and diffusio-osmotic
mobilities are deduced from the individual ion mobilities, defined
above as M	.129

It is however relevant to develop numerical methods to
simulate explicitly the diffusio-osmotic flows. Such a numerical
scheme was recently proposed in ref. 125, in which a proper
mechanical set of driving forces is applied to the system to
mimick the chemical potential gradient of the solute. To do so, the
scheme applies differential forces on the solute and on the solvent,
see Fig. 13b: (i) an external force Fm on each solute particle in the
whole system; (ii) a counter force �[NB

s /(NB � NB
s )] � Fm, acting on

each solvent particle. Here NB
s and NB are respectively the number

of solute particles and the total number of particles in a properly
defined bulk region (‘‘sufficiently’’ far from the surface). The
counter force is set to ensure a force free balance in the bulk
volume. Most important, it can be verified that applying linear-
response theory to the system with this set of forces allows one
to show that the resulting diffusio-osmotic mobility does
identify with the GK relation in eqn (63): this therefore fully
validates the theoretical foundations of the proposed numerical
scheme. The corresponding effective chemical potential is then

related to the applied external force Fm via

�rxm ¼ Fm
NB

NB �NB
s

: (64)

This approach leads as expected to a velocity profile exhibiting a
strong gradient within the interfacial layer, and then a plug flow far
from the surface. The deduced diffusio-osmotic mobility obtained
from the NEMD scheme was checked to be identical to both the
equilibrium GK results and those obtained from the excess flux
under pressure-driven flow introduced above.125

Some difficulties with the microscopic stress tensor. The
continuum approach, as described above, allows one to predict
diffusio-osmotic transport in terms of a surface pressure gradient.
In a different approach, it is accordingly tempting to obtain the
diffusio-osmotic flow by a direct numerical calculation of the local
microscopic pressure in the fluid. However, as was demonstrated
by Frenkel and collaborators in a series of papers,131–134 a major
difficulty in this approach is that there is no unique expression for
the local microscopic pressure tensor (e.g. in terms of the position
and velocities of individual particles and the microscopic forces
acting on them). Accordingly various microscopic definitions of the
pressure tensor lead to different numerical results. Such difficulty
was evidenced for diffusio-osmotic flows,132 but also for thermo-
osmotic flows.133,134

Some results of simulations. Simulations have allowed to
gain much insights into diffusio-osmotic transport. Various fluids,
e.g. Lennard-Jones fluids, but also electrolytes and water-ethanol
mixtures, and various interfaces were considered, hydrophilic or
hydrophobic surfaces, graphene, superhydrophobic surfaces, etc.
Among highlighted effects one may quote the impact of hydro-
dynamic slippage of the fluid at the surface, which does boost
considerably the diffusio-osmotic mobility on hydrophobic69 and
graphene surfaces,125 and even more on super-hydrophobic
surfaces.70 The enhancement of the diffusio-osmotic mobility
scales typically like the ratio between the (effective) slip length
and the interfacial length, as mentioned in the previous sections.

Simulations also give some insights on the local diffusio-
osmotic velocity profile and its relation to the concentration
profiles. Within the continuum framework discussed in the
previous section, the velocity profile is obtained simply by
integration of the Stokes equation of motion in eqn (39), with
the pressure expression given in eqn (38). Simulations actually
show usually a very good agreement between the continuum
prediction and the velocity profiles measured in the NEMD
simulations, giving strong support to the continuum descrip-
tion. Such an agreement may be considered as surprising in
view of the strong velocity gradients occurring on length scales
in the range of a few molecular size. However the Stokes
equation is known to be surprisingly robust down to molecular
lengthscales62 and this explains its success in predicting
diffusio-osmotic flows.

Finally, the continuum framework allows one to relate the
diffusio-osmotic mobility to the concentration profile, and
more particularly to its first spatial moment, see eqn (41). It
is accordingly tempting to relate – as for Marangoni effects –
the amplitude of diffusio-osmotic transport to the adsorbed
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quantity, defined as G ¼
Ð
dz csðzÞ � c1ð Þ. The latter is directly

connected to the surface tension via the Gibbs–Duhem relation.
The adsorbed quantity G provides in most cases a good estimate
for the diffusio-osmotic mobility and its sign. However – as
mentioned earlier – for complex concentration profiles the
relation was found to be more complex than this simple rule
of thumb (for example for water-ethanol mixture at interfaces26).

4 Osmosis beyond van ’t Hoff
4.1 Advanced osmosis and nanofluidics

The previous section highlighted molecular insights into osmo-
tic phenomena, unveiling the underlying driving forces at play.
However such perspectives also suggest possible extensions to
obtain more advanced osmotic transport beyond the linear
framework presented before. In this section we discuss osmotic
transport across channels with more complex geometries involving
symmetry breaking, or active parts. Our objective in this section
is to show that it is possible to extend simple osmosis beyond
the van ’t Hoff paradigm and design advanced functionalities
resulting in non-linear and active transport.

In this context it is interesting to observe that in biological
species (bacteria, archaea, fungi,. . .) many membrane channels
do achieve advanced functionalities in order to regulate osmo-
sis: for example rectified osmosis135 – e.g. an osmotic flow with
a non-linear dependence on the concentration gradient-, or
gated osmosis to prevent lysis and survive osmotic shocks in
mechanosensitive channels3 (with diffusio-osmosis identified
as a potential mechanism for the gating mechanism in deform-
able structures136). These few examples highlight the possibility
of going far beyond the van ’t Hoff paradigm, thanks to
properly designed (active) nanochannels.

We believe that the advent of nanofluidics has a key role to
play in this regard, in order to identify new types of behaviors
which could be scaled-up to macroscopic membranes. The new
opportunities brought by nanofluidics in terms of the variety of
nanoscale geometries and materials, combined with state-of-
the-art experimental instrumentation, allows one to fabricate
and investigate fundamentally the transport in ever smaller
channels, with ever more complex and rich behaviors. Carbon
nanotubes, down to nanometric sizes73,138–140 can now be
manipulated and inserted in devices were water is flown
through – see Fig. 14a. Single nanopores can be carved or
etched in membranes that are only an atomic layer thick74 and
may be accordingly functionalized,141 see Fig. 14b. It is also
now possible to fabricate

:
Angström scale slits using graphene

sheets as spacers, reaching confinement thicknesses down to
B3 Å142,143 – see Fig. 14c.

Such nanofluidic technologies offer new possibilities in the
context of osmotic transport. They allow nearly molecular scale
designs, leading to various nanofluidic-specific effects which
may be key assets for new separation techniques and water
filtration: from specific ion exclusion effects87,138,140,143,144 with
a number of anomalous ionic effects to be investigated,145 to
extremely fast permeation of water, in particular through

carbon nanotubes.139,140,146–148 Also new types of nanoscale
membranes have also emerged recently, offering new designs
as compared to traditional membranes: for example, with
dedicated patterns of hydrophilic and hydrophobic regions;149

or tailor-designed DNA origami channels,86,150 and – last but
not least – the multilayer membranes of graphene (so-called
graphene oxide membranes).75,151,152

This constitutes a new and exciting playground, in which
osmotic phenomena may (and should) flourish in various
forms. We discuss in the next paragraphs two such examples:
the development of osmotic diodes, and an active counterpart
of osmosis, which both lead to tunable osmotic driving beyond
van ’t Hoff.

4.2 Osmotic diodes and osmotic pressure rectification

One of the successes of nanofluidics was to demonstrate the
possibility to design diodes for ionic transport, in full analogy
with their electronic counterpart.62,85,153 This takes the form of
a non-linear and rectified response for the ionic current versus
the applied voltage. Typically an ionic diode behavior manifests
itself in channels with an asymmetric design, e.g. an asym-
metric surface charge or an asymmetric geometry. Such beha-
vior is expected to occur in the regime where the Dukhin
number is of order one and asymmetric along the channel:154

the Dukhin number is defined here as Du = S/csh, where S is
the surface charge density, cs the bulk salt concentration and h
a characteristic channel dimension. It quantifies the impor-
tance of surface versus bulk electric conduction. As such ionic

Fig. 14 From nanoscale to
:
Angström scale pores. (a) Reproduced from

ref. 73. (top) Molecular dynamics representation of water flowing through a
transmembrane multi-wall boron-nitride nanotube and (bottom) trans-
mission electron microscope (TEM) picture of its experimental counter-
part. (b) (top) Molecular dynamics representation of a nanopore in a
mono-layer MoS2 membrane (in blue and yellow) and the salt (green
and red) in solution and (bottom) TEM picture of its experimental counter-
part, a 5 nm pore. Reproduced from ref. 74 with permission from Springer
Nature, copyright 2016. (c) (top) Molecular dynamics representation of
water and ions (orange and blue) flowing through a graphene slit with
7
:
Angström spacing. (Courtesy from Timothée Mouterde) (bottom) AFM

image of bilayer graphene spacers on top of the bottom graphite layer.
Inset: Height profiles yield an estimate of 7 Å for the thickness of spacers
made from 2 layers of graphene or 1 layer of MoS2 (the blue line shows the
scan position for the corresponding trace in the inset). Reproduced from
ref. 137 with permission from AAAS, copyright 2017.
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diodes may find interesting applications to boost osmotic power
generation under salinity gradients, see ref. 75 and Section 6.3.

Now, coming back to osmosis, the asymmetry of the design
may be expected to yield an asymmetric interaction of the
membrane with the electrolyte, hence an asymmetric push on
the liquid. It was shown in ref. 50 that such asymmetric geometry –
depicted in Fig. 15a – results in an osmotic diode, with a rectified
osmotic pressure versus the concentration gradient (non linear
dependence), furthermore tunable by the applied electric field.

The description builds on the previous mechanical views of
osmosis, in Section 2.4. The Stokes equation for fluid
motion writes

0 = �=p + Z=2u + re(�=Ve), (65)

with re = e(c+� c�) the charge density, c	 is the concentration of
positive and negative ions (assumed here as monovalent for
simplicity) and Ve is the electric potential. Following the same
steps as in Section 2.4 to integrate the fluid equations of
motion in the channel, the general relation between flow and
pressure takes the expression

Q = Lhyd � �D[p � Papp] (66)

where Lhyd is the channel permeance introduced above. The
apparent osmotic pressure between the two sides of the chan-
nel is accordingly defined as

DPapp ¼
1

A

ðð
dAdxre � �rVeð Þ (67)

with A the cross section of the pore, L its length. The ion
concentration profiles obey the Poisson–Nernst–Planck equa-
tions, coupling the diffusive dynamics to the applied electric
forces. In spite of the expected non-linear dependence of the
osmotic pressure in terms of driving forces, the symmetry in
the force balance and ionic transport equations, which was
highlighted in Section 2.4 and eqn (28) for the simplest
geometry, still holds. There is accordingly a linear relation
between the apparent osmotic pressure in eqn (67) and the
total surface ion flux js:

DPapp ¼ kBTDcs þ js �
L

D
: (68)

It is therefore expected that the rectifying behavior in the ion
flux, akin to the current diode, thus translates into a rectifying
osmotic pressure.

Solving the full equations in the geometry presented in
Fig. 15a yields a fluid flux:50

Q ¼Lhyd skBTDcs � Dp½ � þQS Dcs½ � exp
eDVe

kBT

	 

� 1

	 

(69)

where the reflection coefficient s is now a non-linear function
of the concentrations in both reservoirs and QS plays the role of
a ‘‘limiting fluid flux’’.50 The apparent osmotic pressure
DPapp = Q/Lhyd is plotted in Fig. 15. The rectification and
diode behavior versus concentration is weak for zero voltage but
strongly enhanced for higher applied voltage bias.

Examples of permeability rectification are actually numer-
ous in the biological world. They are harnessed e.g. in plant
cells135 or in animal cells.155–157 Surprisingly in all the studies
that we are aware of, entering flows are notably larger than
outer flows, and up to 10 times higher in some mammalian
fibroplasts.157 It is fascinating to see how most cells are there-
fore adapted to fill in faster than they would swell under the
same conditions, probably with a link to survival strategies. We
highlight that rectified osmotic flows could be used in a variety
of fields. In fact, Fig. 15b and the results reported in ref. 50,
demonstrate that water may be flown against the natural
osmotic gradient, with water flowing to the high salinity
reservoir, depending on the voltage applied. Furthermore,
under an oscillating electric field, with proper conditions, this
induced water flow against the natural osmotic gradient will be
maintained. This opens new perspectives e.g. for advanced
water purification strategies and active filtration with oscillat-
ing fields, as we discuss later.

4.3 Towards active osmosis

We discuss now a second class of examples of osmotic phe-
nomena that goes beyond the van ’t Hoff paradigm. As we
exhaustively discussed, the idea of osmosis is closely related to
semi-permeability and sieving – with the membrane playing the
role of a simple colander. However one may consider how the

Fig. 15 Osmotic rectification in an osmotic diode. (a) A nanochannel
presents an asymmetric surface charge with S 4 0 and �aS on the other
side with a a 1. The ions are therefore submitted to an asymmetric force
(between one side and the other, in colored arrows) that drives the
osmotic flow. Inspired from ref. 50. Apparent osmotic pressure DPapp

versus (b) salinity gradient Dn = nR � nL (where ni = ci/c0 is a normalized
concentration) and versus (c) applied voltage drop DVe = VR � VL (normal-
ized by kBT/e) as obtained from an analytical solution for the flows of all
species in the nanochannel. (b) and (c) are reproduced from ref. 50 with
permission from the APS, copyright 2013. More information can be found
in ref. 50.
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osmotic pressure builds up in membranes with time-dependent
pores: a pore which opens and closes over time – see Fig. 16 –
will exhibit a time-dependent size exclusion and sieving is thus
expected to generate an intermittent osmotic push on the fluid.
The resulting osmotic pressure is expected to be some time-
average of the push, which remains to be properly defined. But
injecting energy at the pore scale – here via the time-dependent
opening of the pore – may also lead to far-from-equilibrium
behaviors, allowing possibly to bypass the entropy bottleneck.
Osmosis across dynamically stimulated pores is therefore a
subtle problem, which requires proper microscopic foundations.
Beyond the fundamental question, adding the sieving frequency
as a new tuning parameter may improve separation and selec-
tivity properties of the membranes.158,159

The question of dynamic osmosis actually arises naturally in
biological pores, e.g. ion channels, since their shape is affected
by thermal fluctuations or demonstrates out-of-equilibrium
motion.161 The question of out-of-equilibrium osmosis was
discussed in the literature in the 1980s162 and a few molecular
dynamics studies were pursued,161,163,164 usually with a focus
on the specificities of the biological channels under scrutinity.
In fact, temporal dynamics of biochannels are strongly believed
to be connected to the selectivity properties of the channel. For
example, the fluctuations of the refined structure of the selec-
tivity filter of the KcsA channel is believed to be a key factor for
extremely refined passage of the potassium ion.161 Further,
such temporal dynamics of the structure may provide an
efficient alternative to simple steric sieving for selectivity. This
was noticed in the nuclear pore complex,160 where particles see
an effective translocation barrier which is dependent on their
diffusion properties (see Fig. 16b).

To our knowledge, there is no general framework discussing
the concept of ‘‘dynamic osmosis’’. Several simple models were
considered recently by the authors in ref. 158 and 159. Here we
illustrate a few basic concepts underlying this active osmosis
process and the opportunities that it offers.

In line with our previous discussion of osmotic phenomena,
it is particularly fruitful to address the question under the

perspective of the mechanical insights, where the pore with
fluctuating shape is modeled as a time-dependent energy bar-
rier, say U(x,t), using similar notations as previously. The average
osmotic force acting on the fluid is again obtained in terms of
the force acting on the fluid integrated over the channel size and
averaged over time. It writes within this framework

DPapp ¼
ð
dxcsðx; tÞ � ð�rxUðx; tÞÞ

� �
t

: (70)

where here h�it denotes a time average. As for the static (passive)
case, the Smoluchowski equation for the solute allows one to
rewrite the apparent osmotic pressure in terms of the solute flux
across the fluctuating barrier:

DPapp ¼ kBTDcs þ h jsit �
L

Ds
: (71)

It is interesting to note that the concept of osmotic force
DPapp connects directly to the question of translocation of
solute molecules across a fluctuating barrier – via the solute
surface flux js. That specific question was actually the topic of
an exhaustive literature in the context of ratchets, molecular
motors, or stochastic resonance.165,166 Numerous counter-
intuitive consequences were highlighted, both theoretically
and experimentally, like directed motion, ‘‘uphill’’ transport
against gradients, enhanced translocation, etc. Accordingly the
previous symmetry relation eqn (71) shows that the existence of
a finite flux hjsit, with possibly unconventional dependencies on
the concentrations in the reservoirs, will have consequences on
osmotic transport, i.e. leading to flow of the suspending fluid
itself and not only solute motion.

To illustrate this behavior, it is instructive to consider a
simple example, made of an asymmetric membrane as in
Fig. 17, which oscillates in time as an ‘‘on/off’’ process over a
time interval t/2 = p/o. When ‘‘on’’, the barrier height is
considered as much larger than the thermal energy. This
process bares similarities with the ratchet process in ref. 167
and subsequent references, where solute pumping was demon-
strated. In elementary terms, when the barrier is ‘‘off’’, solute
molecules from both sides diffuse freely (see Fig. 17b). Now,
when the barrier is back ‘‘on’’, solute that has crossed the
maximum point of the barrier will slide down to the opposite
side (see Fig. 17c). This process leads to a finite flux of solute
averaged over a period, hjsit, which can be exactly calculated in
the simple model considered, see ref. 168. For example, in the
quasi-static (low frequency) regime, the averaged flux reduces
in this simple system to

h jsit �o!0
Lo� C2 � d0 � C1 � ð1� d0Þ½ �; (72)

with C1 and C2 the solute concentrations in both reservoirs and
d0 the potential asymmetry, see Fig. 17. Beyond the specific
expression (restricted to this specific regime and model), this
result highlights the possibility of uphill solute transport
(pumping against concentration gradients) or enhanced solute
flux, depending on the direction of the concentration gradient
versus the pore asymmetry. This behavior is summarized in
Fig. 17d and e.

Fig. 16 Osmosis through out-of-equilibrium pores. (a) Illustration of a
pore with a time-dependent shape, where the inner pore size may be
either smaller either larger than the typical solute size. (b) Reproduced and
adapted from ref. 160 with permission from Springer Nature, copyright
2016. Representation of the spatiotemporal motion of grafted phenyl-
alanine–glycine nucleoporins (FG-Nups) inside the selectivity filter of the
nuclear pore complex. Small (resp. large) particles that diffuse fast (resp.
slow) see effectively the FG-Nups as static leaving small openings (resp.
moving and everywhere) and therefore encounter only a ‘‘small’’ energy
barrier for translocation (resp. large).
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Now inserting this result for the flux in eqn (71), one there-
fore predicts highly counter-intuitive behaviors for the osmotic
pressure, i.e. the driving force acting on the fluid. In Fig. 17d
and e, we have introduced and plotted the apparent osmotic
pressure

DPapp ¼ kBT C2 � C1ð Þ þ kBTL

Ds
� h jsit C1;C2;oð Þ (73)

based on the full solution of the simplistic previous model.
Notably this plot highlights the possibility of ‘‘resonant osmosis’’
for a characteristic frequency (in the form of an extremum of
sapp), but this simple model also suggests that – depending on
the direction of the potential asymmetry against the concen-
tration gradient – the rejection may be larger than unity (pump-
ing regime) or even decrease towards negative values.168

This points to a wealth of intriguing behaviors for osmotic
phenomena, which were barely explored up to now. As emphasized
above, the recent development of nanofluidics suggests many
routes to develop such active pores in artificial channels, e.g using
voltage-gated nanochannels169–172 or UV light173 or stimulated
surface chemical reactivity.174,175 Other externally controlled exist-
ing devices include thermally responsive nanochannels.176,177 The
challenge awaiting is to achieve such active control in yet smaller
devices to significantly impact water or ion transport.

The foundations of active osmosis remain therefore to be
properly investigated. The present discussion is merely an
appetizer to illustrate the abundance of ‘‘exotic’’ behaviors
which could be unveiled in this context.

5 From diffusio-phoresis of particles to
active matter

The previous sections showed how gradients of solutes induce
fluid motion in the presence of an interface via the diffusio-
osmotic phenomenon. Symmetrically when a (solid) particle is
suspended in a quiescent fluid, gradients of solute will induce
motion of the particle. This motion, called ‘‘diffusio-phoresis’’,
relies on the very same osmotic driving forces, occurring within
the interfacial layer at the particle boundary. The idea to
transport large particles harnessing osmotic forces appeared
first in the Russian literature with the works of Derjaguin and
Dukhin55,56,99 and was more thoroughly investigated in the
1990s.79,178,179 We refer to the review by Anderson in ref. 54 for
a dedicated discussion of the underlying transport mechanisms
and some of its subtle features.

Diffusio-phoresis and its consequences have gained
renewed interest for the last decade, highlighting an increasing
number of situations where this phenomenon is shown to play
a role, as well as dedicated applications in various domains.
Basically diffusio-phoresis occurs whenever there is a gradient
of solute or of a mixture of solutes and such situations are
ubiquitous.180,181 Here we summarize the main elements of the
phenomenon and focus on a number of elementary implica-
tions. More explicit applications will be discussed in the next
section, Section 6.

5.1 E pur si muove: from diffusio-osmosis to
diffusio-phoretic motion

The diffusio-phoretic velocity of a particle under a (dilute)
solute gradient writes as54

vDP = mDP � (�kBT=cN) (74)

Physically the phenomenon at stake is sketched in Fig. 18:
the solute gradient at the solute surface induces a diffusio-
osmotic slip velocity of the fluid (relative to the solid particle)
beyond the interfacial diffuse layer; the particle is put in motion
in order to precisely negate the corresponding velocity. For
spherical particles, the value of the mobility mDP defined in
eqn (74) identifies with minus the corresponding diffusio-
osmotic mobility, as given previously in Section 3.1:

mDP = �mDO. (75)

For example, for a solute interacting via a potential U with
the particle, the diffusio-phoretic mobility is minus the mobi-
lity in eqn (41):

mDP ¼ �mDO ¼ �
1

Z

ð1
0

z exp
�UðzÞ
k0T

	 

� 1

	 

dz: (76)

Interestingly, provided the value for the diffusio-osmotic
mobility is constant over the particle’s surface, it was shown
by Morrison that this result holds for any particle shape (the
argument is valid for any interfacially driven transport54,183).

5.1.1 Phoresis in the thin layer limit. Summarizing
briefly the derivation, eqn (76) is obtained by separating the

Fig. 17 Active membrane as a pump (or sink). (a) An asymmetric potential
barrier (representing the membrane acting on the solute) separates two
solute reservoirs with different concentrations. (b) As the barrier is tem-
porarily lowered, the solute may diffuse inwards from both sides. (c) If the
barrier is risen back, the solute that has diffused beyond the maximum
point of the energy barrier will be carried to the other side. In the example
shown here, more solute from the lower concentration side has traversed
beyond the maximal point. This solute is then transported to the
highly concentrated side. The active membrane therefore acts as a pump.
(d and e) Apparent rejection coefficient as obtained from the on/off energy
barrier model described in the text.168 The normalizing frequency is
o0 = Ds/L

2, and the asymmetry parameter is here d0 = 0.1. Insets indicate
the solute concentration on both sides; Dcs = C2 � C1; for (d), C1 = 0.4C0

and C2 = C0 where C0 is some arbitrary concentration and for (e) C1 = C0

and C2 = 0.1C0.
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diffusio-osmotic driving, which occurs at the particle surface
within the diffuse layer of thickness l, and the far-field flow
occurring beyond the diffuse layer. Following the prediction in
Section 3.1, the near-field diffusio-osmotic flow results in a
diffusio-osmotic ‘‘slip’’ velocity of the fluid relative to the
particle, with amplitude mDO � (�kBT=cs)t, where the index t
refers to the tangential component along the particle surface.
The concentration gradient in the vicinity of the surface (=cs)t is
related to the far concentration field cs. It obeys Ficks’s equa-
tion =2cs = 0 together with the boundary condition at infinity
fixing the concentration gradient, cs(r - N) C zrcN, with z
the coordinate along the direction of the gradient. This gives (in
spherical coordinates):

csðr; yÞ ¼ Rrc1
r

R
þ 1

2

R

r

	 
2
 !

� cos y (77)

outside of the diffuse layer; with r, y the spherical coordinates.
Back to the flow, the velocity field outside the diffuse layer
obeys the Stokes equation

Z=v � =p = 0, (78)

with the boundary conditions on the particle given by the
tangential slip velocity and at infinity given by the uniform
flow field

v r ¼ Rþð Þ ¼ �3 sin y
2

vslipt; & vðr!1Þ ¼ �vDP (79)

in the particle frame of reference; vslip = mDO � (�kBTrcN),
R+ E R + l denotes the position on the particle surface but located
beyond the diffuse layer (here considered as infinitesimal); t is the
tangential vector on the particle’s surface. To lowest order, the

solution to the previous equations results in a flow dominated by
a Stokeslet

vr ¼ �vDP cos yþ
F

4pZ
cos y
r
þ O

1

r3

	 


vy ¼ vDP sin y�
F

8pZ
sin y
r
þ O

1

r3

	 
 (80)

where F = 6pZR(vDP + vslip). As can be easily verified, F identifies with
(minus) the force acting on the particle. At steady-state, the particle
is moving with a constant velocity vDP and no force acts on it.
Accordingly, the diffusio-phoretic velocity vDP is fixed by imposing
F = 0 and this results in eqn (74). This shows implicitly that the far
velocity profile scales like 1/r3 and can be rewritten as in ref. 54

vlðrÞ ¼
1

2

R

r

	 
3

3
rr

r2
� I

h i
� vDP: (81)

where we came back to the lab frame of reference, vl(r) =
v(r) � vDP. Accordingly, the hydrodynamic interaction between
particles undergoing diffusio-phoretic transport is weak, in contrast
to e.g. gravity driven transport where the fluid velocity scales like 1/r
far from the particle. This has important consequences for the
phoretic transport in confinement.54,184,185

5.1.2 Osmotic force balance on particles. Let us come back
to the force balance underlying diffusio-phoresis. We empha-
sized above that diffusio-phoresis, like any interfacially driven
transport, is a force-free motion: the particle moves without any
force acting on it, i.e. the global resulting force acting on the
particle vanishes.54 This has counter-intuitive consequences
and led to various mis-interpretations and debates concerning
osmotically-driven transport of particles,186–191 in particular in
the context of phoretic self-propulsion (see Section 5.3 and
ref. 192). We thus take the proper space here to discuss the
osmotic force balance.

A naive interpretation of diffusio-phoresis is that the particle
velocity vDP under a solute gradient results from the balance of
Stokes’ viscous force Fv = 6pZRvDP and the osmotic force
resulting from the gradient of the osmotic pressure integrated
over the particle surface, hypothetically scaling as Fosm B R2 �
RrP. Balancing the two forces one finds a phoretic velocity

behaving as vDP � R2kBT

Z
rc1. Looking at the expression for

the diffusio-phoretic mobility in the thin layer limit, eqn (74)
and (76), the latter argument does not match the previous
estimate by a factor of order (R/l)2, where l is the range of
the potential of interaction between the solute and the particle.

The difference between the two scalings originates in the fact that
for interfacially driven motion, the velocity gradients occur mostly
over the thickness l of the diffuse layer, and not on the particle size
R, as e.g. for the Stokes flow. More fundamentally, this raises the
question of how osmotic pressure is expressed: the existence of a
difference of solute concentration between the two sides of the
colloidal particle does not obviously imply the existence of a
corresponding osmotic pressure and this belief led to much
confusion. The argument above based on the global force
balance is globally flawed and needs to be properly clarified.

Fig. 18 From osmosis to phoresis. (a) Under a concentration gradient, a
particle is put into motion via diffusio-osmosis occurring at its surface.
(b) Time-stamped stream lines of decane droplet migration towards a
hydrogel beacon initially loaded with sodium dodecyl sulfate (SDS), acting
as a long-range solute source. Adapted from ref. 182 with permission from
the United States National Academy of Science, copyright 2016. The scale
bar is 100 mm. (c) Diffusio-phoretic transport of fluorescent l-DNA under a
LiCl gradient (Dcs = 100 mM over a range of 800 mm, highest concen-
tration being up), scale bar is 100 mm. Images at 100, 150, 200 and 300 s.
Adapted from ref. 77.
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In his exhaustive work in ref. 191 following the debate of
ref. 186–190, Brady tackled the question based on a ‘‘micro-
mechanical’’ analysis of the solute and solvent transport in the
presence of the colloidal particles.

However, in order to properly solve the riddle and reconcile the
various approaches, one needs to go into the details of the force
distribution and write properly the force balance on the particle
undergoing diffusio-phoretic transport. It is accordingly interesting
to relax the hypothesis of a thin diffuse layer, and consider more
explicitly the transport inside the diffuse layer, as was explored by
various authors, using e.g. controlled asymptoptic expansions.193–195

General results for the hydrodynamic flow and mobility can
be obtained without assuming a thin diffuse layer. We consider
that the interaction between the solute and the particle occurs
via a radially symmetric potential U(r), so that the Stokes
equations now writes

Z=2v � =p + cs(r)(�=U) = 0. (82)

The boundary conditions are now replaced by the no-slip bound-
ary condition on the particle’s surface, as well as the prescribed
velocity at infinity (in the frame of reference of the particle):

v(r = R) = 0 and v(r - N) = �vDP (83)

The concentration profile obeys a Smoluchowski equation in
the presence of the external potential U(r), in the form

0 = �=�[�Ds=cs + lscs(�=U)] (84)

with the boundary condition at infinity accounting for a constant
solute gradient cs(r - N) C r cos yrcN (convective transport is
neglected here). Given the symmetry of the problem, the solution
takes the general form cs(r,y) = c0(r)cosy, with c0 scaling with the
gradient at infinity as c0 p RrcN. Altogether this is a self-
consistent equation for the solute concentration field. It should
therefore be considered as a source term for the fluid transport
eqn (82). For large distances to the particle (r c l), it reduces to
the previous result in eqn (77).

Interestingly, the solution of eqn (82) for the velocity profile
can be calculated exactly for any radially symmetric potential
U(r), by extending textbook techniques for the Stokes problem
in ref. 96; see also ref. 196 for a related calculation in the
context of electro-phoresis. It can be demonstrated that the
solution for v(r) still takes the same form as in eqn (80), but the
force along the axis of the gradient appearing in the Stokeslet
term (v B F/r) term now takes the expression

F ¼ 6pRZvDP � pR2

ð1
R

c0ðrÞ �@rUð ÞðrÞ � jðrÞdr (85)

with jðrÞ ¼ 2

3
3
r

R
� 2

r

R

� �2
�R
r

	 

a dimensionless function, the

factor
2

3
originating from the angular average. The diffusio-

phoretic velocity results from the force-free condition, F = 0,
and therefore it writes

vDP ¼
pR2

6pZR

ð1
R

c0ðrÞ �@rUð ÞðrÞ � jðrÞdr (86)

Remembering that c0(r) p RrcN, this equation generalizes
the previous result obtained in the thin layer limit.

At first sight, eqn (85) and (86) appear as a force balance
between the Stokes friction 6pRZvDP and the osmotic force, here
written in terms of the local force c0(r)(�qrU)(r) integrated over
the particle surface (and potential range). The latter represents
the push of the solute molecules on the particle. Actually,
eqn (86) is very similar to eqn (2.7) in ref. 191, with the
r-dependent term pR2 � j(r) replaced in ref. 191 by the prefactor
L(R). However the integrated ‘‘osmotic push’’ is weighted here by
the local factor j(r) (in contrast to ref. 191) and this detail
actually changes the whole scaling for the mobility.

Indeed in the thin diffuse layer limit, with r � R B l { R,
then one may expand j(r) C �2(r � R)2/R2, while the concen-
tration profile c0(r) can be approximated as

c0ðrÞ ’ Rrc1 �
r

R
þ 1

2

R

r

	 
2
" #

exp �UðrÞ=kBT½ �: (87)

One may then verify that the above eqn (86) indeed reduces
to the results in eqn (74) and (76) predicted by the thin layer
approach. In other words, the weight j(r) B l2/R2 is a signature
of the fact that the velocity gradients occur on the potential
width l and not on the particle size R. An osmotic pressure is
indeed expressed at the particle’s surface and yields diffusio-
phoretic transport, but in a very subtle way which does not
reduce to considering only the direct solute force. This corrects
the naive argument suggested at the beginning of the section.

The exact calculation above also allows one to gain key
insight into the local force acting on the particle. The latter is
the sum of the hydrodynamic shear force, normal pressure and
direct interaction with the solute. Using the exact results for the
velocity profile in the thin layer regime, l { R, one predicts

fr ¼ 3LsR
2kBTrc1 cos y

fy ¼
3

2
LsR

2kBTrc1 sin y
(88)

where Ls ¼
Ð1
R

e�bUðxÞ � 1
� �

dx has the dimension of a length
and quantifies the excess adsorption on the interface. Eqn (88)
can be recovered easily with a simplistic argument: one expects
this osmotic force to scale as VintrP = Vintr(kBTcN) where
Vint is the interaction volume. Writing Ls the typical interaction
lengthscale we have Vint E 4pR2Ls, leading accordingly to
eqn (88). While the integrated total force does vanish as
expected, the osmotic gradients do generate an inhomoge-
neous local tension on the surface of the particle, as plotted
in Fig. 19a. Accordingly, if one considers that the particle is
elastically deformable, such tensions would generate a defor-
mation of the particle following the shape sketched in Fig. 19b.

The situation is very different for electro-phoretic transport.
As was first discussed in ref. 197, for electro-phoresis there is a
local force balance between the direct electric force acting on
the particle and the hydrodynamic shear acting on its surface:
accordingly the local force simply vanishes identically. In
physical terms, this is due to the fact that the electric force
acting on the colloid particle exactly balances the electrical

Review Article Chem Soc Rev

Pu
bl

is
he

d 
on

 2
2 

M
ay

 2
01

9.
 D

ow
nl

oa
de

d 
by

 N
ew

 Y
or

k 
U

ni
ve

rs
ity

 o
n 

8/
13

/2
01

9 
5:

04
:3

2 
PM

. 
View Article Online

https://doi.org/10.1039/c8cs00420j


3124 | Chem. Soc. Rev., 2019, 48, 3102--3144 This journal is©The Royal Society of Chemistry 2019

force acting on the electric double layer because of local
electroneutrality (the charge in the electric double layer being
exactly opposite to the surface charge). This can be actually
verified explicitly by extending the previous calculations to
electro-phoresis. This can be performed for weak electrostatic
potential along the lines in ref. 196, and it predicts indeed a
vanishing local force.

Accordingly, particles undergoing electro-phoresis are not
expected to deform, in contrast to diffusio-phoresis which leads
to local deformations. Such results remain to be experimentally
studied in order to observe the modification of a particle
conformation undergoing diffusio-phoretic drift. We note how-
ever that in the context of thermo-phoresis, DNA was reported
to stretch under a temperature gradient.198 Such effects could
have interesting applications in the context of separation of
particles, since their shape will differ depending on their size.

As a last comment, the previous discussion neglected
surface transport at the surface of the particle: this involves
convection of solute in the interfacial region, but also fluid
slippage at the particle surface, which will both affect the
steady-state concentration field of the solute around the particle.
This leads to corrections to the mobility as a function of a
(properly defined) Péclet number, as introduced in ref. 68, 69,
193 and 199.

5.1.3 The diffusio-phoretic mobility. Let us now focus on
the mobility. As for diffusio-osmosis, the diffusio-phoretic
mobility scales as mDP E 	l2/Z where l is the thickness of
the interfacial layer. For electrolytes, the latter identifies with
the Debye layer thickness and one expects accordingly that
mDP B 1/cs so that one usually writes the diffusio-phoretic
velocity under salt gradients as:

vDP = DDP= log cs (89)

The diffusio-phoretic mobility DDP has now the dimension
of a diffusion coefficient. According to the previous estimates,
one expects for electrolytes that DDP E kBT/(8pZcB) with cB the
Bjerrum length, so that the value for DDP is expected to be in the
range – though slightly smaller – of diffusion coefficients of
molecules (thus far larger than any colloid diffusion coeffi-
cient): experimentally typical values for DDP are in the range

DDP B 0.1–1 � 10�10 m2 s�1.78,200 Note that, as for diffusio-
osmosis, diffusio-phoresis under electrolyte gradients with unequal
diffusion coefficients for the anions and cations (D+ a D�) has an
electro-phoretic contribution similar to eqn (47) which can become
quantitatively predominant; see also ref. 54. The expression in
eqn (89) highlights a ‘‘log-sensing’’ behavior, similar to that
observed in bacteria, e.g. in E. coli.201 It is at the basis of various
unconventional transport phenomena which we discuss below.

Aside the case of electrolytes, other classes of relevant inter-
actions involve steric exclusions – e.g. for neutral polymers – for
which the mobility is expected to scale as mDP = Rp

2/Z with Rp the
excluded particle diameter of the solute.54,115,202

On the experimental side, diffusio-phoresis has been investi-
gated in numerous studies. First measurements were performed
by the Russian school,56 and later by Prieve, Anderson and
collaborators in the 90’s.178,179 However the development of
microfluidics over the last two decades has allowed to develop
dedicated systems in which concentration gradients are perfectly
controlled and tunable. It was then possible to measure diffusio-
phoretic motion and obtain further insights into the phenom-
enon and its consequences.21,77–79,200,203–207

While the above discussion assumed implicitly a dilute
solute, the phenomenon is expected to occur under gradients
of mixtures, and is denoted as solvo-phoresis.79 This was for
example investigated in a recent study by Paustian et al.,21 who
showed that polystyrene colloids undergo motion in gradients
of water-ethanol mixtures. The velocity of the particles was
shown experimentally to obey

vDP = DDP= log X (90)

where X is the ethanol molar fraction, thus pointing to non-
ideality effects. It would be interesting to disentangle the
contribution of the dependence of the interfacial thickness
with the molar fraction. As a final remark, a slightly different
phenomenon is the so-called osmo-phoresis, which is obtained
for permeable particles in which their interface plays the role of
a semi-permeable membrane and reported in ref. 208.

5.2 Harnessing diffusio-phoresis: membrane less separation,
log-sensing and localization

In this section we highlight a number of chosen examples to
illustrate the impact and the applications of diffusio-phoresis
in diverse physical situations. An interesting feature of diffusio-
phoresis is that complex patterns of solute gradients can be
rather easily achieved – in relative contrast to electric fields as
driving forces – so that this phenomenon can induce particle
motion in quite subtle ways leading to a wealth of counter-
intuitive behaviors. Such solute patterns may occur naturally,
for example due to evaporation leading then to drying film
stratification,202 in membrane fouling,207 or at dead-end pores,
allowing for boosted extraction of particles in porous media,209,210

as well as in hydrothermal pores with steep pH gradients.181

Alternatively static or dynamic patterns of solutes can be designed
thanks to dedicated microfluidic devices.78,203 An illuminating
example was reported recently in ref. 182, showing that ‘‘chemical’’
beacons emitting solutes may allow to engineer ultra-long range

Fig. 19 Local force acting on a diffusio-phoretic sphere. (a) Local force
field acting on a sphere experiencing diffusio-phoresis with absorption at
its surface in a solute gradient. The local force is plotted with an arbitrary
factor amplitude factor (the same for each vector) and projected in the 2D
plane; (b) potential resulting deformation of the sphere, axisymmetric view,
when the deformation is assumed to be proportional to the local force.
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nonequilibrium interactions between particles, up to millimeters –
see Fig. 18b.

Instead of being exhaustive, we discuss here several ‘‘ele-
mentary mechanisms’’, which serve the purpose of highlighting
the versatile manipulation of particle assemblies via diffusio-
phoretic motion.

Boosting migration. As a first example, we highlight how
diffusio-phoretic transport leads to strongly enhanced migra-
tion of particles, with the fast solute ‘‘towing’’ the large, slow,
particles. This effect was demonstrated in particular in coflow
geometries, such as in Fig. 20, which was considered in various
papers.200,205,206,211 This geometry is quite generic in micro-
fluidics in the context of mixing and serves here the purpose
of highlighting consequences of diffusio-phoretic motion.
Colloids have a low diffusion constant and therefore barely mix
in such a geometry, see Fig. 20a. Adding tiny amounts of salt,
typically millimolars, drastically boosts colloid dispersion – see
Fig. 20b and c – with an observed effective diffusion coefficient of
the colloids which is 10 to 100 times larger than the equilibrium
diffusion coefficient. As mentioned earlier, this is a consequence of
diffusio-phoretic motion of the colloids under the salinity gradients
present across the various parts of the channel. This can be
rationalized on the basis of simple arguments. The growth rate

for the width of the colloid suspension writes as dw/dt = 2vDP =
2DDPr log cs, with cs the inhomogeneous salt concentration. The
latter relaxes via Fick’s diffusion andr log cs � 	1

� ffiffiffiffiffiffiffi
Dst
p

(the sign
depending on the salt gradient direction), so that

dw

dt
� 	2DDPffiffiffiffiffiffiffi

Dst
p : (91)

Note that in the experiments of Fig. 20, the effective time is
related to the position z along the channel as t = z/U (U the
average flow velocity). Integrating this equation yields immediately
the observed diffusive like behavior,

wðtÞ � w0 ¼ 	
ffiffiffiffiffiffiffiffiffiffiffiffi
2Deff t

p
: (92)

with a diffusion coefficient Deff C DDP
2/Ds. Quantitatively Deff is of

the order of a (fraction of) salt coefficient Ds so that Deff c D0 (the
colloid diffusion coefficient) and colloids ‘‘diffuse’’ much faster in
the presence of (even minute) concentration gradients. Similar
behaviors in equivalent geometries have been reported under CO2

gradients205,211 or polymer gradients.206

Localization. As a second example, diffusio-phoretic motion
can be harnessed to manipulate and localize particle assem-
blies. Interestingly in the biological world, bacteria are capable
of using solute contrasts to localize proteins.212 Localization is
then used as an information for further vital processes, for
instance localization of the ring of the FtsZ protein at midcell is
used for cellular division.213,214 Similar features can be
obtained on the basis of diffusio-phoresis under salt gradients,
harnessing the log-sensing feature discussed above in eqn (89),
and leading to particle accumulation.77,78 Indeed, under a
linear salt concentration gradient, the diffusio-osmotic velocity
is not uniform and will be larger in regions of lower salt
concentration – see Fig. 21a. Alternating the gradient over time
leads to rectification of diffusio-phoretic motion and accumu-
lation of the colloids towards e.g. the center of the cell, as
highlighted in Fig. 21b. It is interesting on this elementary
example to formalize the rectification process. The colloid and
salt equations of transport obey the coupled Smoluchowski and
diffusion equations

@tr ¼ �= � �D0=rþDDP=½log cs� � rð Þ

@tcs ¼ Ds=
2cs

(93)

with r the colloid density and cs the salt concentration; D0 and
Ds are the particle and salt diffusion constants and DDP the
particle diffusio-phoretic mobility. Let us simplify the geometry
to fix ideas and consider a one-dimensional channel. We
consider an oscillating salt concentration profile, rcs(x,t) =
f (t)Dcs/c, with c a characteristic length scale and f (t) an
oscillating function of time with zero average. Averaging over
the rapid salt concentration oscillations, the mean diffusio-
phoretic velocity which enters the Smoluchowski equation
simplifies to %vDP = DDPhr[log cs]it E �DDP(h f 2it/c2) � x, where
x is the distance to the center of the cell and h�it an average over
time. It can be rewritten in terms of an effective potential via

%vDP � m0 � �qxUeff, (94)

Fig. 20 Harnessing diffusio-phoresis to transport particles. (a and b)
Adapted from ref. 200. Fluorescent colloids are injected in the central
branch of a microfluidic channel with three branches, with the same inlet
velocity. They are imaged at different positions along the channel (side). In
case (a) all channels have the same buffer composition (control), whereas
in (b) salt (typically 10 mM of NaCl, LiCl or KCl) is added to the side
channels. Although little dispersion is seen in case (a) due to the low
diffusivity of colloids, a strong migration towards the high salinity is
observed in (b). The horizontal scale bar is 50 mm. (c) Dispersion of a dye
(Rh6G, 50 mM) at a cross-section of a microfluidic system with three
branches similar to (a). The dye enters the central channel and the side
channels are filled with polymer (5 wt% Ficoll 400 K) for the spreading
experiment (control, without polymer). Adapted from ref. 206 with per-
mission from Springer Nature, copyright 2017. (d) Spatio-temporal evolu-
tion of particles upon exposure to CO2 gradients (CO2 is flown above and
below, in x = 	L). The particles are polystyrene, diameter 0.5 mm, dispersed
in a liquid buffer, and L = 400 mm. Adapted from ref. 205, image under
Creative Commons Attribution 4.0 International License.
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with m0 = D0/kBT the colloid mobility and

UeffðxÞ ¼
kBT

2
f 2
 �

t

x2

s‘2
; (95)

with s‘ ¼
‘

2

ffiffiffiffiffiffiffiffiffi
D0

DDP

r
� ‘. This illustrates that the rectified diffusio-

phoresis of the colloids can be interpreted in terms of a harmonic
trapping potential towards the central node (x = 0) of the
solute concentration oscillation pattern. This allows one to
manipulate the colloidal population via time-dependent solute
gradients.

Alternative routes for focusing colloidal populations were
proposed using diffusio-phoretic transport without the require-
ment of time-dependent fields80 – see Fig. 21c. These make use
of combined steady gradients of salt and pH which are shown
to yield localization of the particles. The interpretation of this
subtle phenomenon incidentally highlights that the effects of
gradients cannot be simply superimposed for diffusio-phoresis
and a new formulation of coupled diffusio-phoretic transport
was required, rewriting the driving solute gradients in terms of
the corresponding ion fluxes. Such combination of gradients of

pH and salts was suggested to occur in hydrothermal pores,
with potential consequences on the emergence of an ion-
gradient-driven early protometabolism and the origin of
life.181 Finally focusing of colloidal particles was demonstrated
in dead-end pore geometries,210 with potential applications to
preconcentration, separation, and sorting of particles.

Osmotic shock. As a last example, we discuss a very striking
and counter-intuitive behavior stemming from log-sensing,
coined as osmotic shock, which was discussed in ref. 77. It
illustrates that diffusio-phoresis keeps a long-lasting ‘‘memory’’ of
solute gradients, even when they would be expected to be already
homogenized. Consider a situation where the colloids are spread
in a reservoir with lateral size c, with initially a uniform solute
concentration c0. Then at time t = 0, solute is flushed at the
boundaries, cs(x =	c/2, t) = 0 for t 4 0 (simplifying to 1D, and x is
the coordinate from the center of the reservoir). After a short
transient, the solute concentration profile will decay to zero
according to cs(x,t) C c0 exp[�t/t]cos(px/c), with t = c2/Ds the
diffusion timescale of the solute. The diffusio-phoretic velocity of
the colloids then writes vDP = DDP � r log c(x,t), so that

vDP ¼ DDP �
p
‘
tan

px
‘

� �
� DDP �

p2

‘2
� x; (96)

pointing towards the center of the reservoir, x = 0, hence gathering
the colloid population towards this position. From eqn (96) it is
clear that the DP velocity is therefore independent of time! This
leads to the counter-intuitive result that diffusio-phoretic motion
occurs on far longer timescales than the solute diffusion time-
scale. This behavior was highlighted experimentally in ref. 77,
where diffusio-phoretic motion of colloid particles was observed
on timescales ten times longer than the naive diffusive timescale
for the salt. Log-sensing is an efficient approach to localize
colloids, but its application for trapping of other types of particles,
e.g. polymers, remains to be explored. This could possibly be
harnessed to improve sensors or traps for high throughput
chemical reactions.215 Applications to information storage and
retrieval could also be explored.216 Log-sensing also helps remove
particles or fluids trapped in dead-end pores, as we will discuss in
Section 6.4.

As a final word on this section, the role of diffusio-phoretic
transport in biological context has yet to be readily explored
and quantified. In the toolbox of living systems, concentration
gradients play a versatile role, readily exploited in many aspects
of the biological machinery, such as energy reservoirs, but also
serving more sophisticated functionalities, associated with
spatial signaling, localization and pattern formation at the
various scales involved in the biological processes. One may
cite e.g. enzyme transport,217 protein localization in bacteria212

or more generally in spatial cell biology the use of concen-
tration patterns for positional information,218–220 to quote a
few. Obviously chemotaxis in biological organisms under solute
gradients is a highly complex phenomenon stemming from the
interplay of complex signalling pathways, quite far from the
simple diffusio-phoretic transport discussed here. But one may
reversely remark that the consequences of diffusio-phoresis as
a physical phenomenon cannot be overlooked in biological

Fig. 21 Focusing particles with diffusio-phoretic transport. (a) Trajectories
of two (yellow) particles starting at different lateral positions upon an
alternating concentration gradient. As the diffusio-phoretic velocity scales
logarithmically with solute concentration, the particles closer to lower
concentrations move faster, resulting in localization of the particles at the
center. (b) Alternating fluids are flushed on both sides of a circular
microfluidic well containing fluorescent colloids. The concentration of
LiCl in the two side channels alternates (left/right) with period 480 s,
between buffer alone and 100 mM. The scale bar is 200 mm. (left) Initial
particle distribution in the well and (right) stationary colloid distribution
under the alternating concentration gradient. Reproduced from ref. 77.
(c) Diffusio-phoresis under combined steady pH and salt gradients. Flowing
NaOH and HCl solutions separately in two reservoir channels establishes a
gradient in pH from 3.3 (left) to 10.7 (right), within which diffusio-phoretic
particles proceed monotonically to the right. A NaCl gradient is super-
imposed on the pH gradient inducing diffusio-phoresis to the left. Stream-
line images reveal unexpected focusing at a location within the channel.
Adapted from ref. 80 with permission from the APS copyright 2016.
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materials, especially in the presence of ubiquitous gradients.
This has been barely explored.221

5.3 From self-propulsion to self-assembly

Beyond the idea of passive diffusio-phoresis, where particles
move under externally imposed solute gradients, arose the idea
that the solute concentration gradients could be generated on
the particle themselves, e.g. via chemical reactions occurring at
their surfaces. For an asymmetric chemical reactivity, this self-
diffusio-phoresis process thus generates self-propulsion of the
particles, fueled by the chemical reactions.192,222,223 Together
with other phenomena leading to self-propulsion, this triggered
the emergence of the field of active matter, which has exploded
over the last decade. It is not our purpose to review this field, as
this goes beyond the scope of our focus on osmotic forces and
we refer to some recent reviews on this topic.223–225 We however
highlight here a few phenomena where osmosis, via diffusio-
phoresis and related mechanisms, is explicitly at play.

Self-diffusio-phoresis. On the experimental side, the phenom-
enon of self-diffusio-phoresis was pioneered by Paxton and
coworkers,226 who showed self propulsion of Platinum/Gold
nanorods in hydrogen peroxide. Hydrogen peroxide is chemically
transformed differentially on both metals, either forming or being
depleted on each side of the rod, and this creates a gradient of the
reacting specie (here hydrogen peroxide) driving diffusio-phoresis,
see Fig. 22. For such bimetallic particles with redox reactions on
both sides of the particle, self-electro-phoresis may actually
contribute to the driving force, via motion of charges (electrons
and ions) within and outside the particle. Self-diffusio-phoresis
was further demonstrated in colloidal janus particles of various
materials, see ref. 227–236, and ref. 224 and 237 for a more
exhaustive literature on this aspect.

On the theoretical side, the mechanisms by which the
creation or removal of species on the particle’s surface generate
an osmotic pressure gradient and motion are not obvious and there
has been some initial debate on this question, see ref. 186–190. This
echoes directly our discussion about the diffusio-phoretic force

balance in Section 5.1.2. Actually the question was pioneered by
Lammert et al. on the putative self-electro-phoresis of biological
cells or vesicles driven by non-uniform ion pumping across the
bounding membrane.238 Echoing this situation, an illuminating
model for self-propulsion via asymmetric osmotic driving
force was introduced by Golestanian et al.111,239 They considered
a particle exhibiting a non-uniform chemical reactivity on its
surface, as defined by the corresponding solute flux on its
surface a(r) = �Drr>Creact (corresponding to the generation or
consumption of the solute by the chemical reaction), Dr being
the diffusion constant of the reactant. This boundary term is
coupled to the diffusive dynamics of the solute concentration in
the bulk. The resulting concentration gradient induces a
diffusio-osmotic slip velocity vDO at the surface, depending on
the position, and accordingly particle motion. In the case of a
janus sphere, exhibiting a contrasting chemical reactivity on its
two moieties, the self-diffusio-phoretic velocity V takes the
simple expression

V ¼ hvDOisphere ¼
1

8Dr
a� � aþð Þ mþ þ m�

� �
(97)

where a	 is the chemical reactivity on the two sides and m	 the
local surface phoretic mobility. We emphasize though that on
the experimental side, other mechanisms also contribute to the
motion of catalytically self-propelled particles, like self-electro-
phoresis.192

To some extent, such ‘‘active particles’’ mimick self-propelled
biological organisms. The possibility to fabricate artificially these
systems constitutes a playground to study far-from-equilibrium
behaviors.224 Because active particles consume energy at a local
scale, their collective behavior is a priori not constrained – at least to
some extent – by thermodynamics and may possibly allow to break
the bottleneck of the second principle; cf. the beautiful example of
the rotating Feynman ratchet with active materials in ref. 240.

Active suspensions. Such active particles have fascinating
behaviors, and we focus on a few examples. First, self propulsion
leads to ballistic motion on short timescales, but orientational
random motion leads to diffusive behavior on long timescales, in
a way similar to the so-called ‘‘run and tumble’’ motion of
bacteria. The effective diffusion coefficient is however far larger
than the bare diffusion coefficient based on the Stokes–Einstein
estimates D0,228,229 see Fig. 22b. As a rule of thumb the effective
diffusion coefficient is typically Deff E V2 � tR, where V is the self-
propelling velocity and tR is the timescale for rotational Brownian
motion: tR B Drot

�1 B R2/D0, where Drot is the rotational diffusion
coefficient, R the particle size. As a consequence the particles
behave as a ‘‘hot’’ bath, with a high effective temperature defined
from a ‘‘fluctuation–dissipation’’ – like relation as kBTeff = Deff/m0,
where m0 = D0/kBT the bare particle mobility, so that

kBTeff � kBT �
V2tR
D0

(98)

(up to numerical prefactors). Altogether this predicts that
Teff/T B Pe2 where the Péclet number is defined in terms of the
self-phoretic velocity as Pe = VR/D0. This prediction was further
confirmed experimentally.229

Fig. 22 Self-propelled particles. (a) Chemical reactions occur differen-
tially at the front and at the rear of a reactive colloidal particle, thereby
inducing a chemical concentration gradient. This leads to diffusio-osmotic
driving at the surface, hereby displacing the particle. (b) Experimental mean
squared displacements DL2(Dt) and 2D trajectories (inset) for bare (blue)
and active colloids (red) in 7.5% H2O2 solution. Bare colloids (bottom) show
standard diffusion (DL2 linear in time), while the mean squared displace-
ment of active colloids shows a ballistic motion at small timescales and a
diffusive motion at longer timescales. The measured diffusion coefficients
are D0 = 0.33 mm2 s�1 for bare and Deff = 1.9 mm2 s�1 for active colloids.
Reproduced from ref. 229 with permission from the APS, copyright 2010.
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Osmotic pressure of active suspensions. The question of the
osmotic pressure created by active particles was raised in a
number of theoretical and experimental works.234,241–244 As we
introduced above, the osmotic pressure acting on the fluid can
be defined mechanically via the average force exerted by the
active particles on a semi-permeable wall. In the case where
the active particles exhibit a Boltzmann-like equilibrium in the
presence of the wall (say, represented by an external potential),
as shown e.g. for sedimentation profiles,229 then the osmotic
pressure reduces to the van ’t Hoff law, except that the
temperature is replaced by the effective temperature of the
suspension:

DP C kBTeff � Dr (99)

where r is here the concentration of active particles, and
the effective temperature Teff was introduced above. This
matches the equation of state measured using sedimentation
profiles.234

However Boltzmann-like equilibrium is expected to fail in
some limiting situations for active particles. In particular it is
commonly observed that self-propelled particles do hit ‘‘com-
pulsively’’ hard surfaces, similarly to a fly on a window:240 in
such cases, the particle remains stuck at the membrane’s
surface until it reorients, and there is a non-Boltzmannian
accumulation of particles at the membrane. This is nicely
exemplified in the run-and-tumble model under an external
field, where strong deviations from the Boltzmann profile is
predicted when the typical drift velocity Vd = m0Fext (with Fext the
maximum external force, say, due to the separating membrane), is
larger than the particle self-propulsion speed V.245 This situation
occurs for steep potentials. When such accumulation occurs, the
corresponding osmotic push will differ from the simple van ’t Hoff
law, see ref. 243 and 244. In particular, the osmotic pressure
depends on the properties of the membrane itself and its inter-
action with the particles – typically via the ratio between the typical
membrane characteristic steepness and the particle mean-free
path,244 in strong contrast to the van ’t Hoff ‘‘universal’’ relation.
Similar deviations from the van ’t Hoff law also occurs when the
interaction between the active particles and the membrane involves
wall-induced rotational torques.242

Towards self-organization and self-assembly. Another inter-
esting feature of particles propelling via self-diffusio-phoresis is
that they interact via chemical signaling. Propelled particles act
as a beacon – similarly to the situation considered in ref. 182 –
and leave a ‘‘trace’’ of their passage in the form of a diffusing
cloud of chemicals which will be felt by other particles, see
Fig. 23. Accordingly other active particles will be reoriented
towards or against246,247 the active particle via diffusio-phoretic
motion (on top of their self-driving motion). Indeed the surface
creation or consumption of solutes generates long-distance
distortion of the solute concentration profile, typically relaxing
spatially as a monopole dcs B 1/r (the scaling deriving from
Fick’s equation with a sink). This long-range interaction is for
example highlighted in Fig. 23b, showing the diffusio-phoretic
attractive motion induced by a single beacon, from ref. 231. At

shorter range, the interaction may become more complex and
requires detailed investigation of the chemical drivings.247

This osmotic-induced chemical interaction is at the origin of
many advanced collective properties of active particles, such as
clustering,224,230,232,248 or self-assembly,231,235 see Fig. 23c and
d. Out-of-equilibrium self-assembly has raised enormous inter-
est, since activity leads to unexpected structures, with the hope
of designing novel and smart materials.224

It is interesting to formalize the basics of the phenomenon
at stake by writing the coupled diffusion-reaction equation
for the colloid population and solute concentration. For the
purpose of illustration, we only consider here a single neutral
chemically generated specie which acts as a chemo-attractant to
the colloids. These dynamical equations actually identify with
the so-called Keller–Segel equation, which were written to
describe the chemotactic aggregation of a slime mold (amoebae)
under the perspective of a dynamical instability:230,249,250

@tr ¼ �=: �Deff=rþ ðmDP=cs � rÞð Þ

@tcs ¼ Ds=
2cs þ ar ’ 0

(100)

with Deff the effective diffusion coefficient of the active colloids,
Ds the diffusion coefficient of the ‘‘chemo-attractant’’ specie and
a the chemical rate of the powering chemical reaction occurring
at the surface of each colloid; we assume here that the solute
dynamics are fast. By analogy to electrostatics, the second equation
for the solute allows one to obtain the solute concentration as a
function of the colloid density, as csðrÞ ’ a=Ds

Ð
dr0rðr0Þ=4pjr� r0j.

Fig. 23 Out-of-equilibrium self-assembly. (a) Sketch of the diffusing
chemical trace left behind active particles, and which modifies the local
chemical gradient. Another active particle approaching this chemical
gradient will therefore sense a different driving velocity along its edge,
changing its trajectory (here in an attractive configuration). (b) Courtesy
from Jeremie Palacci, data from ref. 231. Passive colloid diffusio-phoretic
speed as a function of the distance to a hematite cube that can be used -
with blue light - to catalyse the dissociation of H2O2. (c) Spontaneous self-
assembly of active particles. The particles form various cluster sizes and
shapes. The scale bar is 10 mm. Reproduced from ref. 230 with permission
from the APS, copyright 2012. (d) Sequential self-assembly of DNA-grafted
droplets, the different colors represent different functionalizations. The
scale bar is 10 mm. Reproduced from ref. 252, image under Creative
Commons Attribution 4.0 International License. (e) Targeted assembly of
phototactic swimmers into nanogears. The scale bar is 1 mm. Reproduced
from ref. 235 with permission from Springer Nature, copyright 2018.
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When introduced in the first equation in eqn (100), this shows
that the diffusio-phoretic attraction acts as a self-consistent
effective potential such that

Ueffðr; frgÞ ¼ �
mDP

m0

a
Ds

ð
dr0

rðr0Þ
4pjr� r0j: (101)

with m0 the bare colloid mobility. Equivalently, the dynamics of
the colloid population can be formally derived from an effective
free energy functional of the colloid system which takes the
simple form

Feff ¼ kBTeff

ð
dr rðrÞ logrðrÞ � rðrÞ½ �

� 1

2

mDP

m0

a
Ds

	 
ð
dr0dr00

rðr0Þrðr00Þ
4p r0 � r00j j

(102)

This highlights that the ‘‘osmotic interaction’’ via the
diffusio-phoretic motion induced by the solute traces leads to
long range non-equilibrium interactions. This is expected to
lead to strong collective effects, such as the clusterization
observed experimentally. For attractive systems, mDP 4 0, these
equations are formally analogous to a (non-inertial) gravita-
tional system. Keller–Segel and subsequent works have shown
that the above equations predicts an aggregation mechanism,
similar to a Chandrasekhar gravitational collapse.249,250 Similar
conclusions were predicted for thermally active colloids251

where the threshold for collapse was rederived.
However the clusters observed in the experiments, e.g. in

ref. 230, 231 and 248, do not correspond to full collapse and are
rather dynamic, with clusters reaching a finite size and con-
tinuously rearranging over time, see Fig. 23c. As shown in
ref. 253 and 254, this behavior can be reproduced by Keller–
Segel-like dynamics provided both translational and rotational
phoretic conditions are properly taken into account in the
kinetics. Using this framework, it is furthermore possible to
predict the condition in which dynamic clusterization
occurs,253,254 in good agreement with the experiments.

Beyond clusterization, the self-diffusio-phoretic motion of
particles and their osmotic interactions were shown lately to
lead to the self-assembly of active particles into higher levels of
structure organization. This is highlighted in Fig. 23e, from
ref. 235, where self-spinning microgears are built on the basis
of these non-equilibrium interactions. Beyond, more ‘‘on
demand’’ structures are possible, like structures assembled
through DNA-grafted interfaces252,255,256 (see Fig. 23d).

6 Osmosis, towards applications

From food processing in biological organisms,257–259 to reverse
osmosis for desalination and energy generation from salinity
differences,31,73,260,261 osmotic forces are harvested in a con-
siderable number of applications in very different domains. In
this section we review more specifically a variety of such
applications based on (recently) elucidated transport mechan-
isms relying on osmotic forces.

6.1 Water treatment and membrane separation

6.1.1 Reverse and forward osmosis and their limitations.
Access to clean water and cleaning water from industrial waste
is a great challenge:262 in 2015 still 663 million people world-
wide lacked access to drinkable water,263 and cleaning waste
water is becoming a major challenge in oil and gas indus-
tries;264,265 going further, some new regulations may appear to
enforce a zero liquid discharge for industrial waste, thus
requiring complete recycling of water resources.266 On a day-
to-day basis, humanity consumes the equivalent of 10–100
cubic kilometers of fresh water267 for all purposes (agriculture,
industry, domestic). Because fresh water is not directly accessible
everywhere, and in order to cover the growing need for fresh-
water, desalination of sea water and cleaning of waste water have
become essential.

Lately, membrane based technology has established itself
for water purification. Reverse osmosis is the most broadly used
technique (representing 62–65% of the installed capacity in 2015
for desalination,268,269 24% being thermal based technologies).
Reverse osmosis relies on the very simple principle of applying
an external large hydrostatic pressure to counterbalance the
osmotic pressure difference and induce a flow of water towards
the low concentration side – see Fig. 24a. In particular, one can
therefore extract water from seawater by concentrating seawater
even more, or extract water from waste water (in a simplistic
view). For desalination the pressures involved are typically of
30–50 bars in order to exceed the osmotic pressure.

In a different approach, forward osmosis (combined with
thermal methods for desalination) makes use of draw solutions
to counterbalance the salinity induced osmotic pressure270–272

– see Fig. 24b. Generating a high osmotic pressure, typically
above the 30 bars of pressure between sea and fresh water,
requires draw solutes which are highly soluble in water, and
also with a sufficiently small size (hence low molecular weight).
Indeed, as a rule of thumb, for a solute with elementary volume
v0 B r3 with r the solute size, the maximum osmotic pressure

which can be achieved is typically DP � kBT

v0
. This would

suggest that solutes with size above 1 nm are not able to
achieve a sufficiently high osmotic pressure for desalination

Fig. 24 Reverse osmosis and forward osmosis. (a) Schematic explaining
reverse osmosis, occurring via a piston applying a large hydrostatic
pressure p such that the difference to the atmospheric pressure (pressure
of the other compartment) is larger than the osmotic pressure p–p0 Z DP.
(b) Schematic explaining forward osmosis, occurring via the addition of
some soluble species (here the purple solute) that increases the osmotic
pressure on the drought side and therefore ‘‘attracts’’ water from the brine
side.
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(note that this argument forgets departures from ideality,
which could increase more strongly the osmotic pressure). In
a more subtle way, a solute with a strong affinity towards water
may also decrease the water chemical potential and modify
accordingly the pressure. This echoes the huge pressure drops
measured with hydrogel structures.273

A number of other membrane based techniques with similar
geometry are used or being developed, from electrodialysis
(based on electric potential driving of salts)274,275 to capacitive
deionization379–381 but also shock electrodialysis based on the
idea of combining salt recovery with a porous charged
material,276 concentration polarization,277 and other techniques
harnessing chemical phenomena like adsorption desalination278

or biodesalination279,280 and bio-water treatment.281

Membrane-based technologies suffer from a number of
limitations. First, they have a high-propensity to fouling by
molecules which are larger than the critical molecule size
allowed to pass;282 also due to the large pressures applied
during reverse osmosis. Second, because they are passive
membranes – essentially discriminating particles upon their
size – they can not be at the same time very selective and highly
permeable. This was formalized for ultrafiltration membranes
in ref. 283 and 284. In fact increasing the permeability of a
membrane (and therefore the energy required to recover a given
amount of cleaned water) requires essentially to broaden the
size of the pores, as water flow within pores is limited by
friction on the pore walls. However this leads inevitably to a
decrease in the selectivity or separation properties of the
membrane; and reciprocally. This is called the selectivity-
permeability trade-off. For nanofiltration membranes (used
for reverse osmosis and so on) the same trade-off exists
although the proper establishment of a limiting regime is still
empirical261 – see Fig. 25. Finally, one challenging progress
route for membrane separation is the ability to perform mole-
cular scale design285 and therefore to ensure the best selectivity
properties to eliminate e.g. micropollutants, some of which are

of great concern for health.286 Overall, it should be realized that
the main current challenge in desalination and water purifica-
tion is not really the permeability of the membrane, but rather
achieving a well-controlled selectivity to retain/reject specific
species.

6.1.2 What can we expect from new nanomaterials and
nanofluidic devices? It may appear that developing the ‘‘ideal
membrane’’, which is both highly selective and highly permeable,
is like squaring the circle. However, Nature has achieved this tour-
de-force, with water porins like aquaporins exhibiting unrivalled
performances in terms of selectivity and permeability.289 This
requires to develop new artificial materials with properly decorated
nanopores allowing for such exquisite design, for example self-
assembled artificial water channels,289–291 or tailor-made DNA
origami channels.86,150 This is actually a challenge that nanoscale
science may be up to.88,152,289,292

The development of new nanomaterials has indeed allowed
the emergence of new avenues for membrane separation.
Graphitic materials of various forms and geometries, such as
carbon nanotubes, graphene and lately graphene oxides mem-
branes, have raised considerable promises, see ref. 88 and 152
for reviews on this topic. Carbon materials were consistently
shown to exhibit ultra-low water friction and high permeability,
and this represents a key asset to minimize the viscous loss in
separation processes. Furthermore advanced functionalization
allows one to decorate the nanotubes improving selectivity.72,293,294

Membranes made of nanopores in e.g. 2D graphene sheets have a
molecular thickness, while keeping high mechanical strength: this
accordingly increases the driving forces for transport (which scale
like the inverse thickness) by orders of magnitude, hence all
transport coefficients and the overall efficiency of the process.88

Still, these graphitic systems – carbon nanotubes, graphene
slits and more generally 2D materials – remain difficult to
fabricate as large-scale membranes. Upscaling towards indus-
trial applications is a considerable challenge. The advent of
graphene oxide membranes and their derivatives may change
the story. These are constituted of graphene flakes, which
organize into parallel stacks of graphene layers, having nano-
slits in a staggered alignment and an interlayer distance which
is typically below the nanometer. In spite of the complex
labyrinthine flow across multiple graphene layers,295 the mem-
branes demonstrate large permeability.296,297 Last but not least,
they are relatively easy to fabricate at large scale. Such systems
therefore appear as ideal membranes for ionic separation298

and may well revolutionize the domain of filtration.
Now, beyond materials themselves, it should be realized that

nanoscales allow for many new ‘‘exotic’’ transport phenomena,
the consequences of which have – up to now – been barely
harnessed. One may quote for example the membranes made
of hydrophobic nanopores, making use of nanobubbles as a
semipermeable sieve for osmotic phenomena;149 or the ionic
and osmotic diodes, allowing for rectified transport in mem-
branes, or the active osmotic phenomenon, as we discussed
above; or in a different context, the specific adsorption proper-
ties of graphene oxide membranes allowing for water-ethanol
separation in membranes,299 which are far more efficient than

Fig. 25 Selectivity permeability trade-off. (a) Adapted from ref. 283.
Selectivity versus permeability values for ultrafiltration membranes (used
for separation of larger molecules than salt ions). Bovine serum albumine
is the model molecule for selectivity. The line indicates the standard
selectivity permeability model (with a log normal distribution of pores,
Poiseuille flow and selectivity given by Zeman and Wales exclusion rules287).
(b) Adapted from ref. 261 with permission from Springer Nature, copyright
2016. Selectivity versus permeability values for reverse osmosis membranes
using salt as the model specie for selectivity. The lines correspond to the
empirical models inspired from ref. 288 to relate maximal selectivity and
permeability in reverse osmosis membranes.
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standard distillation. Such routes would deserve a proper
exploration to go beyond the relatively basic sieving principles
underlying membrane science. These should offer alternative
routes for filtration and separation which still need to be
invented.

6.2 Osmosis in biological systems: aquaporins, ion pumps
and the kidney

Osmotic forces are harvested in the biological world in a consider-
able variety of phenomena and contexts: to store energy, induce
mechanical motion, control ejection and absorption of compounds,
etc. Osmotic pressure was much studied at first in plants,5 and one
may in fact assess that plant life depends on osmotic forces. Indeed
plants can not rely on muscle for force generation, yet they are able
to achieve tensile and compressive stresses on a much wider
range.300 To produce motion or growth, they rely on an underlying
hydraulic machinery driven by osmotic or humidity gradients. For
example, phloem§ flow harnesses osmotic driving to transport sugar
over long distances.258,259,301–303 Osmotic transport is critical to
regulate size in e.g. conifer leaf.304 The opening and closing of
stomata on leaves¶ 305 and the circadian motion of various
plants and flowers306,307 is regulated by swelling or shrinking
driven by water flows. Those flows are generally actuated by
active transport of solutes through specialized pumps.308,309

Even biofilms harvest osmotic pressure gradients in the extra-
cellular space for surface motility.310

In animals and human beings, a number of processes involve
osmotic flows for water or volume regulation and transport: from
the kidney311 to the liver312 and the intestine,313 not forgetting
salivary secretion.314 Cells harvest osmotic forces in a variety of
ways, most obviously to control expansion and regulate size, e.g.
in cysts,315 and also to regulate absorption316 or ejection of
genetic material317 via small capsules. A number of processes
also harvest more subtle forces in a fascinating way and we cite a
few to engage the curious reader. Osmotic pressure changes may
affect frequency of miniature end-plate potentials in neuromus-
cular junctions,318,319 but also drive oscillatory flows for cell
regeneration.320 Electro-osmosis is harvested for uphill transport
of water by insects in draught areas321 but also more generally
for epithelial transport.322,323

The list of examples of osmotic transport in biological
systems is nearly infinite, and occurs at all possible scales from
individual molecules to organs and tissues. It is pointless to
attempt a thorough review. Rather, we discuss below in more
detail three specific biological phenomena related to osmosis.
These examples raise in particular the question of whether such
phenomena may be mimicked artificially to achieve advanced
osmotic transport in artificial devices.

6.2.1 Aquaporins: the ideal semi-permeable membrane. A
decisive turnpoint in the study of nanoscale systems was
triggered notably by the discovery of nanoscale channels in
biology. One of the most famous of these channel families is

the aquaporin family (the most common being AQP1 or
CHIP-28, see Fig. 26a).324,325 An aquaporin is a water-specific
channel; aquaporins are present in many organs in living
systems, animals, but also plants:326 they play a central role
in the human kidney (see below), are also key role players in red
blood cells and many other organs,327 and regulate water
uptake in plants.328 The striking specificity of aquaporins is
that they are both highly selective to water and highly perme-
able. The permeability of an aquaporin was measured notably
by P. Agre et al. to be in the range of pf = 11.7 � 1014 cm3 s�1 at
37 1C8 329,330 (with pf here defined as Q = pfvwDp/kBT; Q is the
water flux and vw the bulk water molecular volume). This
corresponds to E3 million water molecules translocating
per second per bar (pf being related to the particle flux dN/dt
according to dN/dt = (pf/kBT)Dp). The value of the permeability
of the aquaporin is much larger than that for other channels,
see ref. 289 for a comparison, or what would predicted by
continuum dynamics at these scales.62,332

Aquaporins present several intriguing features: surprisingly
they are hydrophobic channels335 and they are extremely
constricted335 – only 3 Å in diameter at the narrowest point
that allows for this selectivity. An aquaporin-based membrane
constitutes therefore a somewhat ideal semipermeable
membrane. All of its exceptional transport properties are inti-
mately connected to its nanoscale (and even

:
Angström-scale)

structure – thus hinting to the striking and appealing proper-
ties of fluid flow at the nanoscale. It is thus natural to look for
artificial solutions for semi-permeable membranes harvesting
properly designed nanoscale structures.290,291 For example,
aquaporins present a sophisticated hourglass shape, that is
believed to enhance the water permeability,336 see Fig. 26b.
Such a geometry could be readily mimicked using e.g. pore
coatings337 to enhance permeability of membranes.

6.2.2 Kidney: an ultra-efficient and unconventional osmo-
tic exchanger. As a second example, we discuss the separation

Fig. 26 The aquaporin AQP1 water channel. (a) Molecular dynamics
simulation of water transversing an aquaporin channel. Snapshot from
movie in ref. 333 under Creative Commons license, in complement to
ref. 334. (b) Effective pore diameter of the AQP1 and GlpF channels. Pore
diameters were determined with AMBER-based van der Waals radii and
analysed using the program HOLE38. Reproduced and adapted from
ref. 335 with permission from Springer Nature, copyright 2001.

§ Phloem is a living tissue that transports soluble compounds in particular sugar
in plants.
¶ Stomata are small pores at the leaves surface that control leaf transpiration.

8 A more recent measurement in ref. 331 suggests that this value may actually
have been underestimated by a factor 5.
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process occurring in the kidneys. As we highlight, the efficiency
of the kidney filtration process takes its root in a very uncon-
ventional osmotic process, and could be inspirational for future
separation technologies.

Per day, the human kidney is capable of recycling about
200 L of water and 1.5 kg of salt, separating urea from water
and salt at the low cost of 0.5 kJ L�1 338 while readsorbing
C99% of the water input. The core of the kidney separation
process lies in the millions of parallel filtration substructures
called nephrons.338 A striking feature is that the nephrons of all
mammals present a precise loop geometry, the so-called Loop
of Henle – in the shape of the letter ‘‘U’’ – see Fig. 27a. This loop
plays a key role in the urinary concentrating mechanism and
has been extensively studied from a biological and physiologi-
cal point of view.338–342

As put forward in ref. 311, the U loop acts as an osmotic
exchanger, similar in concept to a thermal exchanger – see
Fig. 27a. A mixture of water, salt and urea (or any other
compound to be separated) enters and flows through the
tubular U loop. Water and ions may be exchanged through
the tube walls with a common interconnecting media, called
the interstitium. On the descending side (D), aquaporins allow
for water permeation across the walls. On the ascending side
(A), salt is actively pumped, using an external source of energy
(in the case of the kidneys, the dissociation energy of Adenosine
Tri-Phosphate, ATP). This pumped salt results in an increased
salt concentration in the interstitium, higher than the concen-
tration of salt and urea in the descending tube (D). The osmotic
pressure is therefore inverted and drives water from the U tube
to the interstitium across the aquaporin channels. As a result,
urea is highly concentrated in the U loop, while salt and water

are redirected from the interstitium towards the blood circula-
tory network. This U-shape geometrical design is key to the
efficient operation of the separation. Note that the third limb
following the U-tube plays a crucial role in enhancing the
separation efficiency.311

One may actually estimate the working efficiency of this
osmotic exchanger in a simple way, providing a lower bound on
the separation ratio. It is quantified in terms of the amount of
lost water Z = cA,top

w vA,top/cD,top
w vD,top, where v is the flow velocity

calculated at the top of the ascending (A) or descending (D)
branch, and cw is the concentration of water. For the system to
work, water has to flow from the descending branch towards
the interstitium and this requires that chemical activities obey
aWater

D,top Z aWater
I,top . The latter can be expressed simply (in the low

concentration regime) in terms of molar fractions and one
obtains

cD;topw

c
D;top
w þ c

D;top
s þ c

D;top
waste

� cI;topw

c
I;top
w þ c

I;top
s

(103)

where cw, cs and cwaste are respectively the concentrations of
water, osmotic activator (salt) and waste. Assuming that all the
osmotic activator has been reabsorbed in the upper branch

yields cI;tops ¼ vD;top

vI;top
cD;tops . Water flow is conserved and thus

cD,top
w vD,top = cI,top

w vI,top + cA,top
w vA,top. A lower bound for the

fraction of lost water Zlost can then be simply deduced from
eqn (103) as

Zlost �
cD;topwaste

c
D;top
s þ c

D;top
waste

 !n

: (104)

with n = 1. For the geometry including a third reabsorbing
branch, the collecting duct, see Fig. 27a, a similar reasoning
yields the same result with n = 2. The square exponent thus
leads to much smaller lost water fraction Zlost showing that this
third branch is essential in the overall efficiency of the kidney
separation. Using physiological values for the concentration,
this estimate provides a prediction for water reabsorption, and
thus urea separation, in the range of Zlost B 1%, which is in
excellent agreement with every-day life experience; see ref. 311.
To some extent, note that the osmotic exchanger of the kidney
may be compared to a forward osmosis process. However the
key difference is the geometry with 3 limbs that allows for a
more efficient reabsorption of water.

In fact, energy wise, this system is also shown to be far more
efficient than standard reverse osmosis principles, as can be
estimated within the above model, see Fig. 27b. In living
systems, the nephron operates the separation of urea from
water near the thermodynamic limit, C0.2 kJ L�1.311 Yet,
standard dialytic filtration systems, which are based on reverse
osmosis and passive equilibration with a dialysate, require
more than two orders of magnitude more energy.343

Some attempts to build artificial devices mimicking the
nephron were reported in the literature, but they rely on biolo-
gical tissues or cell mediated transport, and cannot be easily
scaled up and transferred to other separation devices.344–346

Fig. 27 The osmotic exchanger principle of the kidney. (a) Inspired from
ref. 311. Water, salt and urea molar fractions are represented in various
colors along the U tube (descending, D and ascending A) limbs and the
interstitium (I). For visibility, the water molar fraction was divided by 100.
Black arrows represent the direction of flow. A semi-permeable
membrane (containing aquaporins) separates the descending limb and
the interstitium, while the ascending limb contains salt pumps transporting
actively the salt to the interstitium. A third limb, the collecting duct (CD, in
lighter collers) also exchanges with the interstitium via a semipermeable
membrane. The latter is crucial for the overall efficiency of the separation
process. (b) Adapted from ref. 311. Power required for the functioning of
the separation process as a function of the targeted water loss ratio: for the
simple loop geometry (A + D), for the full serpentine (A + D + CD), as
compared to the equivalent reverse osmosis process under a pressure
gradient (RO). (a) and (b) are under Creative Commons Attribution 3.0
License.
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None of the approaches so far rely on the specific geometry of
the U-loop to improve the filtration process. Mimicking the
separation process occurring in the kidney based on the physical
perspective described above can now be foreseen using micro-
fluidic elementary building blocks.

6.2.3 Proton pumps, chemi-osmosis and advanced ionic
machinery. As a last example, we discuss proton pumps and
channels, which are compelling illustrations of how Nature
harvests osmotic forces to drive mechanical parts. Biological
systems have developed a fascinating artillery of devices to
passively and actively transport ions, namely ionic channels
and ion pumps. Among these, proton pumps are canonical
examples. We detail a few examples below.

Proton pumps to build proton gradients. There exists a great
variety of ways to actively transport protons in biology, from
combined proton-electron transfer in cytochrome oxidase (cru-
cial for respiration347) to proton pumps implying the participa-
tion of ATP – the latter are called H+-ATPases.348 ATP-ases play a
key role in bio-energetics and are ubiquitous in many forms of
life and plants.349 They include three types. The P-type ATP-ases
include in particular the plasma membrane H+-ATPase, that
uses the dissociation energy of ATP to form gradients of
protons. These gradients are crucial for plant movement (from
phloem loading, to size regulation in the stomatal aperture, to
tip growing systems** 350). The V-type ATP-ases also use the
dissociation energy of ATP to form gradients of protons. Inter-
estingly this chemical reaction is accompanied by a rotary
motion of the protein. It is central to many processes in
animals,351 from acid base balance in the kidney, pH main-
tenance in mechanosensory hair cells, bone resorption, tumour
metastasis, sperm motility and maturation etc. The last type,
the F-type, can work similarly to the V-type352,353 and consumes
ATP to form gradients of protons depending on aerobic
conditions.354 However it most commonly works the reverse
way, e.g. consuming the proton gradient and synthesizing ATP,
and we discuss that below.

Proton gradients harvested for energy vectorization and locomotion.
The idea that osmotic gradients could be harvested for advanced
functionalities was introduced as early as in the 1960s, by the
seminal work of Mitchell in ref. 355. He introduced the concept of
chemi-osmotic coupling, namely that a chemical reaction may be
powered by the directed channeling of a specie. In the case of the F-
type ATP-ase, directed motion of protons (note that the full reaction
does imply the production of water on one side of the membrane)
catalyzes the synthesis of ATP through a rotary motion353 – see
Fig. 28a. As the F-type catalyzes the formation of ATP (that is the
vector for energy in all living systems), it is central to all forms of
life.356 The rotary motion occurring during synthesis can be
harvested for artificial locomotion of inorganic devices.357 Harvest-
ing proton gradients for locomotion is more commonly performed
not by the F-type ATP-ase but by the bacterial flagellar motor358 –
see Fig. 28b. The bacterial flagellar motor is an impressive 45 nm358

ionic machinery at the root of bacterial locomotion via flagellar
rotation notably in E. coli.359 A proton gradient induces sponta-
neous transport of protons through stator parts (MotA/MotB).360 As
the transport is gated through these channels, it induces a ratchet-
like motion of the rotor part of the motor.361 The flagellum is
attached to the rotor and therefore rotates. Around 1200 ions
translocating per rotation generate a force at the base of the
flagellar motor of about 200 pN.358 The flagellum rotates at about
100 Hz358 allowing E. coli to swim at more than 10 body lengths
per second!

Nanoscale ionic machinery. The proper function of the F-type
enzyme is dependent on a subtle balance of osmotic and
chemical potentials for proper function362 and the detailed
mechanisms involving motion and electric field coupling to
the proton flux are still investigated.363 Further physical insight
on the detailed flows in the proton pump but more broadly on
ionic channels is required to establish biomimetic principles to
construct similar ionic machines with artificial material. Such
physical insight is also dependent on better modeling of ion
transport at the ultimate scales, with strong charge inter-
actions, breakdown of hydrodynamics, etc.

6.3 Blue energy harvesting: osmotic power and capacitive
mixing

As we have seen, filtration and separation of molecules requires
energy input to counteract the entropy of mixing. Reversely,
entropic energy harvesting may be possible by mixing mole-
cules. The energy harvested from differences in salinity, e.g. by
mixing sea water and fresh river water, is called blue energy.
The maximal entropic energy collected by mixing volumes of
sea and river water is typically 0.8 kW h m�3, see ref. 364. Over
the earth, counting the natural potential resources where rivers

Fig. 28 Harvesting proton gradients: energy vectorization and locomo-
tion. (a) Simplistic view of an F-type H+-ATPase, here working as an ATP
synthesis enzyme. A proton gradient is maintained between the inter-
membrane space and the cytoplasm by the respiratory cycle. Protons thus
naturally flow inwards through the proton channel of the ATPase (in
yellow). This triggers a mechanical rotation of the central element of the
ATPase that in turn catalyzes the synthesis of ATP from adenosine dipho-
sphate (ADP) and phosphate (P). (b) Simplistic view of the bacterial flagellar
motor (in blue). The proton gradient transverses here the stator parts of the
motor (in yellow), namely the MotA/MotB complexes. These are respon-
sible for turning the basal rotor of the flagellar motor. As the flagellum is
attached to the motor, this induces rotation of the flagellum and allows for
bacterial locomotion.

** Tip-growing systems, such as pollen tubes or root hairs, continuously grow in
one direction.
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flow in the ocean such as the Amazonian river, a total of around
1 TW of power could be harvested, amounting to 8500 TW h in a
year.260 This is to be compared with the actual production of other
renewable energies: in 2015, hydraulic energy production is
B4000 TW h, the nuclear energy around 2600 TW h, and wind
and solar 1100 TW h altogether.365 In the global energy balance,
blue energy, as a renewable and non-intermittent source of energy,
has thus a great potential. Here we focus on some energetic and
osmotic aspects of blue energy and refer to ref. 75 for a more
detailed review of the current status of blue energy harvesting.

The current attempts to harvest blue energy have essentially
relied on two techniques, as sketched in Fig. 29. Pressure-
retarded osmosis (PRO) harvests the natural osmotic force
between sea water and river water when they are separated by
a semipermeable membrane to activate a turbine to generate
electricity. Reverse electro-dialysis (RED) uses diffusion gradi-
ents of salts between sea water and river water to directly
generate (ionic) electric currents by separating the corres-
ponding ion fluxes using a multi-stack of cation and anion
selective membranes.366 Both strategies rely on separation of
water from ions or ions from water, and therefore require
subnanoporous structures which impede the water fluxes and
diminish energetic efficiency. Current PRO technologies are only
able to produce up to 3 W m�2, less than the critical 5 W m�2 for
economic viability.367 The reasons for such a low performance
can be readily understood: while the osmotic pressure at the
interface between sea water and fresh water is considerable and
reaches 30 bars, the permeability of the semi-permeable
membrane is extremely small since its pore structure is in the
sub-nanometer scale to sieve ions: the power, which is the
product of flow rate and pressure drop is accordingly small.

On the other hand, state-of-the-art RED achieved up to
8 W m�2 in controlled environment,82 and there is an industrial
hope for blue energy harvesting which is currently explored
with the REDStack project in the Netherlands.75,366

Still we note that the above power figures should not be
considered as negligible, because membrane systems are quite
compact and hundreds of square meters of membranes can be
packed over a single ground square meter. Such performances
should be compared to the 2.5 W per square meter of ground
field required for a Windmill farm,368 due to the very large
required distance between windmills to prevent flow inter-
actions. This illustrates that blue energy is actually already
competitive as such in spite of the poor performances of PRO
and RED.

Beyond PRO and RED, it was shown recently that new
nanomaterials and nanofluidic transport constitute key assets
that allow to boost considerably these performances.73–75,87,369

Experiments across nanotubes of boron-nitride (BN), and sub-
sequently across MoS2 nanoporous membranes, reported huge
ionic currents. A puzzling remark is that the BN nanotubes in
the experiments of ref. 73 or the MoS2 nanopores of ref. 74 are
permeable to ions, in contrast to the canonical views of RED
involving cation and anion selective membranes. The origin of
the osmotic current was then shown to be the diffusio-osmotic
ionic currents taking place at the surface of the materials,
coupled to the considerable surface charge exhibited by these
systems – see Fig. 30. We reported in the previous section the
corresponding ionic current in eqn (55) and (56), and for a
membrane constituted of N tubes of radius R, length L and
surface charge S, the ionic current can be estimated as

Iosm � N2pRS� vDO � N
2pR
L

SDDO � D log cs (105)

where vDO the diffusio-osmotic water flow speed and DDO is the
diffusio-osmotic mobility, typically DDO B kBT/(8pZcB). This
prediction was fully confirmed experimentally in ref. 73.

Fig. 29 Collecting blue energy. (a) Pressure retarded osmosis (PRO). The
mixing of sea water and fresh water across a semi-permeable membrane
drives a water flow that turns a turbine generating energy. (b) Reverse
electro-dialysis (RED). Fresh and sea water are separated by stacks of
alternating cation and anion selective membranes. Spontaneous diffusion
induces fluxes of ions through the selective membranes, which is captured
at the boundaries by reactive electrodes producing an electric current.
Usually RED is performed by alternating fresh and sea water a dozen times,
although only three layers are represented on the figure.

Fig. 30 Blue energy with diffusio-osmosis. A porous membrane with
large and charged pores (zoom) induces a diffusio-osmotic plug-like flow
with center velocity vN upon a salt concentration difference ((e.g. here
between sea and fresh water) as seen in Fig. 9). This flow drives excess
charges in the electric double layer producing a net ionic current Iosm that
can be harvested in a load resistance RL – top right electric schematic.
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Therefore – and this is a key asset – the blue energy does not
require full selectivity of the membrane, in contrast to RED
standards. Connecting the membrane to a load resistance RL –
Fig. 30, the maximum osmotic power which can be harvested is
easily found to be

P ¼ 1

4
RporeIosm

2 (106)

where Rpore is the pore or membrane resistance (that can be
obtained from standard conductance measurements). Osmotic
power reaches thousands of Watts per square meter in BN
nanotubes, and even up to 106 W m�2 for the 2D MoS2 due to its
molecular thickness (leading to huge gradients). This estimate
actually suggests to couple diffusio-osmotic current generation
with an asymmetric pore geometry leading to ionic diode
behavior:75 blocking the ionic backflow thanks to the diode
property allows one to boost the output power by reducing Joule
losses (see details in ref. 75 and Fig. 30). Asymmetric channels
were indeed shown to improve energy harvesting.370,371

This methodology can be readily generalized to other mate-
rials which are better suited for upscaling as compared to BN
nanotubes. Key progress has been made recently in this
direction.75 Using diffusio-osmotic currents thus constitutes a
promising route for improved blue energy harvesting, making it
possibly relevant to industrial scale.

Beyond these membrane-based routes, the so-called ‘‘capa-
citive mixing’’ methodology is an alternative approach to
harvest osmotic energy.372 The principle is to charge and
discharge an ionic capacitor by alternating flows of salty and
fresh water. Capacitor plates are connected to current collec-
tors. First (step A on Fig. 31a) salty water is flushed in, charging
the capacitor plates, resulting in a closed circuit current in the
load resistance. Then (step B), salty water is replaced by fresh
water. When the circuit is closed again on the load resistance
(step C), the capacitor plates discharge into the bulk as fresh
water is less salty, resulting in a current in the opposite
direction. The circuit is opened and fresh water is replaced by
salty water (step D) and the cycle may start again.

The power generated may be computed from the area of the
cycle in the voltage/charge plane – see Fig. 31b. Typically, over
1 cycle (about 20 h373), 1 J per gram of carbon electrode may be
collected. To compare with previous results, we estimate that
1 carbon plate of 6 � 6 cm2 is about 1 g, such that one may recover
around 0.2 W m�2 with capacitive mixing. Capacitive mixing there-
fore requires significant progress in optimizing the cell setup and the
nanoporous structure to enhance performances.374,375

6.4 Dead-end pores: detergency, particle and liquid osmotic
extraction

We have demonstrated in the previous sections how efficient
diffusio-phoresis is to boost migration of particles. Combined
with the ability to generate gradients of solute (in particular of
salts) at small scales, it proves a method of choice in various
applications to extract particles or liquids from dead-end pores.
We discuss shortly two examples where diffusio-osmotic forces
are harnessed.

A nice application of diffusio-osmosis was highlighted
recently in the context of cleaning and the significance of
rinsing in laundry detergency.376 The question at stake here
is how to extract particles which are stuck in dead-end pores in
the porous matrix constituting the fabric. A simple flow result-
ing from mechanical action may not be able to perform this
task, especially since particles buried in small pores in the
interyarn pore space may not be recovered by advection because
flow is channelled by larger pores (see Fig. 32a and c). Experi-
ments then showed that rinsing with fresh water generates

Fig. 31 Capacitive Mixing to collect blue energy. (a) Capacitive mixing
cycle. Two electrodes with functionalized surfaces (such that one is
positively charged in surface (green) and the other negatively charged in
surface (orange)) are embedded in a fluidic device where salty water and
fresh water are alternatively flushed in a cycle. (b) Associated voltage
versus charge cycle. The cycle is described further in the text.

Fig. 32 Particle removal with diffusio-phoresis. Reproduced from ref. 376
with permission from the APS, copyright 2018. (a) Fluorescence image
sequence showing particles in a dead-end microfluidic pore, upon advec-
tion in the main conduct. The solutions are composed of SDS at 10 mM. (b)
Same as (a) with a solute gradient, where the inner pore solute concen-
tration is 10 mM and the outer (main channel) is 0.1 mM. All scale bars are
50 mm. (c and d) A piece of cotton fabric is stained with colored colloidal
particles (polystyrene latex). The piece of fabric is washed and rinsed in
water (c) or washed in 10 mM SDS and rinsed with water (d) then
photographed immediately after rinsing (left) and 120 s afterwards (right).
All scale bars are 1 cm.
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surfactant gradients at the scale of the fabric fibres and this in
turn leads to diffusio-phoretic motion of the particles inside the
dead-end pores. This flushing geometry echoes the osmotic
shock discussed above. As highlighted in Fig. 32b and d, the
gradient-induced motion allows one to extract particles from
the intertwined network of pores. This suggests that, after
laundering with any kind of detergent, rinsing with fresh water
will allow a diffusio-phoretic push to wash out dirt and stains. It
is worthwhile noting that detergency within this prospect also
benefits from the log-sensing and osmotic shock effect dis-
cussed in Section 5.2: particle removal by this mechanism is
effective on significantly long time scales, allowing for proper
removal of the particles.

This type of mechanism based on diffusio-phoretic migra-
tion is versatile and applies to any flushing geometry. Various
recent experiments considered extraction of particles – colloi-
dal particles and oil emulsions – from dead-end pores.209,210

Such results have also obvious applications in a different
context, in geology for example, where dissolution and recrys-
tallization at the mineral-fluid interface leads to ubiquituous
salt gradients at the root of diffusio-phoretic and -osmotic
transport.76,377 In fact, flushing by fresh water was shown to
enhance considerably oil recovery, a method coined as ‘‘Low
salinity enhanced oil recovery’’.378 While the very origin of this
phenomenon is still debated, it is quite clear that diffusio-
osmotic flows will play a key role in recovering biphasic
mixtures using salinity gradients. Consider oil in a porous
structure with typical pore radius a, as sketched in Fig. 33,
where oil is trapped in dead-end pores. After a flush with fresh
water, a diffusio-osmotic flow may be generated at the surface
of the porous material, with velocity vDO = �DDOr log cs.
Assuming first that oil is blocked, this generates a counter-
balancing pressure gradient, such that the total flux is vanish-
ing, leading to a pressure drop

DpDO ¼ �
8ZDDO

a2
D log cs½ � (107)

along the dead-end channel (and independent of the channel
length). Putting in numbers, with a strong salinity gradient
between salty water at 1 M and fresh water at 0.1 mM to fix

ideas, we find DpDO = 0.07 bar for a = 100 nm and up to DpDO =
30 bars for a = 5 nm. This has to be compared to the oil–

water capillary pressure expressed as DPcap ¼
g
a

with g C

10–20 mN m�1 a typical surface tension at the oil–water inter-
face (possibly decorated with injected surfactants). While
Dpcap = 2 bar 4 DpDO for a = 100 nm, it is in the same range
for a = 5 nm with Dpcap B DpDO B 40 bar. For very small pores,
the pressure induced by diffusio-osmosis – which scales as
1/a2 – is thus able to bypass the capillary pressure, scaling as
1/a. These simplistic estimates are made for illustration only
and would deserve more detailed experimental investigations.
They highlight the efficiency of diffusio-osmotic effects to
extract liquids which are deeply confined within nanometric
dead-end porosity.

7 Concluding remarks and
perspectives

As is clear from our discussion in the previous section, osmosis
is ubiquitous and crucial to an impressive number of processes,
with extremely diverse manifestations. In spite of this diversity,
a key and universal aspect of osmosis is that it may be
interpreted as a driving force, exerted by the membrane (or a
surface, or a particle’s surface, and so on) on the solute
particles. As we have seen in many situations in detail, we
typically expect the apparent osmotic pressure to write gener-
ically as

DPapp C hcs(�rUeff)i

with h�i some specific average and Ueff the effective interaction
potential. This mechanical perspective allows one to interpret
most osmotic related phenomena (diffusio-osmosis, diffusio-
phoresis, active osmosis, etc.). Beyond this generic description,
a proper description of the forces at play is required in more
specific examples, as we showed on the subtle example of the
force balance in diffusio-phoresis.

Our understanding of osmotic related phenomena is still
blurred by a number of open riddles. Non-equilibrium osmotic
flows should be investigated, in particular to harvest non-
equilibrium forces for advanced transport of species, which
offer a number of promising avenues. Introducing more reli-
able descriptions and understanding for ionic transport at the
smallest scales should also open the way to build advanced
ionic detectors and ionic-powered machinery. At micrometric
scales, a number of processes could be improved, harvesting
the properties of specific geometries – as in the kidney –
together with a clever mix of osmotic forces – as diffusio-
phoresis for detergency.

Overall we still have a lot to learn from Nature and how it
harvests osmosis in many forms, for separation purposes,
energy storage and harvesting, etc. Today osmosis is usually
harnessed in its most basic form, for example as the proto-
typical example of osmotic pressure across a semi-permeable
membrane. Yet Nature has developed far more clever and far

Fig. 33 Diffusio-osmotic effects for oil recovery under salinity gradients.
Enhanced oil recovery is traditionally preformed by injecting sea water in
the reservoir to push the oil. However flushing with fresh water slugs is
known to boost the process. Gradients of salinity within dead end pores
may help bypassing the capillary forces blocking the oil within the porosity.
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more complex examples. Mimicking the natural wonders with
artificial systems is a great challenge but it opens new avenues
for many outstanding societal questions that are worth the
journey.

8 List of symbols

We report below symbols that are used frequently throughout
the review.
a Pore radius
A Membrane or pore area
b Slip length of the surface
b = 1/kBT
cs Solute concentration
cw Water or solvent concentration
c+/� Concentration of positive or negative ions
DDO Diffusio-osmotic ‘‘diffusion’’ coefficient
DDP Diffusio-phoretic ‘‘diffusion’’ coefficient
D0 Colloid diffusion coefficient
Ds Diffusion coefficient of the solute
e Elementary charge
E Electric field
e Dielectric permittivity of the fluid
Z Solvent viscosity
IDO Diffusio-osmotic ion current
Ie Electric current
Je Exchange or Excess solute flow
Js Solute flow
js = Js/A solute flow per unit area
kB Boltzmann’s constant
Kosm Osmotic electric mobility
L Thickness of the membrane or length of the pore
khyd Permeance of the membrane or pore
cB = e2/4pekBT Bjerrum length
L Transport matrix (or a part of the full matrix)

LD ¼ DsA

ZL
, solute permeability of the membrane or pore

Lhyd ¼ khydA
ZL

, hydrodynamic permeability of the

membrane or pore
l Range of potential interactions

lD ¼ 1
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8p‘Bcs
p

Debye length

ls ¼ Ds

kBT
mobility of the solute

mDO Diffusio-osmotic mobility
mDP Diffusio-phoretic mobility
mEO Electro-osmotic mobility
m0

i Chemical potential of the pure specie i
mi Chemical potential of specie i
Ni Number of molecules of specie i
os Solute ‘‘mobility’’ across the membrane
p Pressure
P Osmotic pressure
Q Volume flow
R Particle size
re Charge density

s Reflection or selectivity coefficient
S Surface charge
T Temperature
U(x) Potential barrier representing the membrane
v Velocity field of the fluid
vDO Diffusio-osmotic velocity
vDP Diffusio-phoretic velocity
vEO Electro-osmotic velocity
vw Molar volume of water
Ve Electric potential
X Solute molar fraction
z Zeta potential
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